scholarly journals Ultra-thin silicon-on-insulator waveguide bend based on truncated Eaton lens implemented by varying the guiding layer thickness

Author(s):  
S. Hadi Badri ◽  
M.M. Gilarlue ◽  
S.G. Gavgani
Author(s):  
N. David Theodore ◽  
Juergen Foerstner ◽  
Peter Fejes

As semiconductor device dimensions shrink and packing-densities rise, issues of parasitic capacitance and circuit speed become increasingly important. The use of thin-film silicon-on-insulator (TFSOI) substrates for device fabrication is being explored in order to increase switching speeds. One version of TFSOI being explored for device fabrication is SIMOX (Silicon-separation by Implanted OXygen).A buried oxide layer is created by highdose oxygen implantation into silicon wafers followed by annealing to cause coalescence of oxide regions into a continuous layer. A thin silicon layer remains above the buried oxide (~220 nm Si after additional thinning). Device structures can now be fabricated upon this thin silicon layer.Current fabrication of metal-oxidesemiconductor field-effect transistors (MOSFETs) requires formation of a polysilicon/oxide gate between source and drain regions. Contact to the source/drain and gate regions is typically made by use of TiSi2 layers followedby Al(Cu) metal lines. TiSi2 has a relatively low contact resistance and reduces the series resistance of both source/drain as well as gate regions


2017 ◽  
Vol 56 (10) ◽  
pp. 105503
Author(s):  
Kiichi Furukawa ◽  
Akinobu Teramoto ◽  
Rihito Kuroda ◽  
Tomoyuki Suwa ◽  
Keiichi Hashimoto ◽  
...  

2018 ◽  
Vol 32 (31) ◽  
pp. 1850344 ◽  
Author(s):  
N. Eti ◽  
Z. Çetin ◽  
H. S. Sözüer

A detailed numerical study of low-loss silicon on insulator (SOI) waveguide bend is presented using the fully three-dimensional (3D) finite-difference time-domain (FDTD) method. The geometrical parameters are optimized to minimize the bending loss over a range of frequencies. Transmission results for the conventional single bend and photonic crystal assisted SOI waveguide bend are compared. Calculations are performed for the transmission values of TE-like modes where the electric field is strongly transverse to the direction of propagation. The best obtained transmission is over 95% for TE-like modes.


2021 ◽  
Vol 255 ◽  
pp. 01003
Author(s):  
Kevan K. MacKayt ◽  
Winnie N. Ye

A novel broadband multimode waveguide bend is proposed that supports the propagation of multiple TE modes on a silicon-on-insulator platform. The gradient curvature bend utilizes trapezoidal subwavelength grating (SWG) segments, connected by adiabatically tapered radial strips to achieve efficient mode (de)multiplexing. The inclusion of the radial strips offers an extra degree of design freedom, allowing the realization of a multimode bend with only one single full etch step. The access waveguide has a width of 2.075 μm with an effective radius of 10 μm. Propagation loss for all modes remains below 2.96 dB, and intermodal crosstalk has a maximum of -19 dB across a broad bandwidth of 100 nm, centred at 1550 nm. This work presents an excellent design choice for broadband mode-division multiplexing operations.


1985 ◽  
Vol 21 (23) ◽  
pp. 1102 ◽  
Author(s):  
J.P. Colinge ◽  
H.K. Hu ◽  
S. Peng

1997 ◽  
Vol 469 ◽  
Author(s):  
Guénolé C.M. Silvestre

ABSTRACTSilicon-On-Insulator (SOI) materials have emerged as a very promising technology for the fabrication of high performance integrated circuits since they offer significant improvement to device performance. Thin silicon layers of good crystalline quality are now widely available on buried oxide layers of various thicknesses with good insulating properties. However, the SOI structure is quite different from that of bulk silicon. This paper will discuss a study of point-defect diffusion and recombination in thin silicon layers during high temperature annealing treatment through the investigation of stacking-fault growth kinetics. The use of capping layers such as nitride, thin thermal oxide and thick deposited oxide outlines the diffusion mechanisms of interstitials in the SOI structure. It also shows that the buried oxide layer is a very good barrier to the diffusion of point defects and that excess silicon interstitials may be reincorporated at the top interface with the thermal oxide through the formation of SiO species. Finally, from the experimental values of the activation energies for the growth and the shrinkage of stacking-faults, the energy of interstitial creation is evaluated to be 2.6 eV, the energy for interstitial migration to be 1.8 eV and the energy of interstitial generation during oxidation to be 0.2 eV.


1999 ◽  
Vol 146 (7) ◽  
pp. 2737-2743 ◽  
Author(s):  
S. Hénaux ◽  
F. Mondon ◽  
F. Gusella ◽  
I. Kling ◽  
G. Reimbold

1995 ◽  
Vol 46 (8) ◽  
pp. 688-691
Author(s):  
Noriyoshi SHIBATA ◽  
Yukari ISHIKAWA

2013 ◽  
Vol 2 (9) ◽  
pp. P357-P361 ◽  
Author(s):  
Pablo E. Acosta-Alba ◽  
Oleg Kononchuk ◽  
Grégory Riou ◽  
Cécile Moulin ◽  
Christelle Bertrand-Giuliani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document