Influence of the modification of iron-bearing intermetallic and eutectic Si on the mechanical behavior near the solidus temperature in Al-Si-Cu 319 cast alloy

2019 ◽  
Vol 560 ◽  
pp. 126-132 ◽  
Author(s):  
Kun Liu ◽  
X. Grant Chen
2010 ◽  
Vol 160-162 ◽  
pp. 831-835
Author(s):  
Zhong Wei Chen ◽  
Hai Fang Zhang ◽  
Jiang Chao Zhao

Microstructure of A357 alloy modified by Sr has been investigated by the Electron Back Scattering Diffraction (EBSD) mapping technique using a Field Emission Gun Scanning Electron Microscopy (FEG-SEM). An appropriate sample preparation technique by ion milling was applied to obtain a sufficiently smooth surface for EBSD mapping. Results show that the eutectic morphology in microstructure of A357 alloy modified by Sr was changed to fine fibrous, and the grain size was refined. By comparing the orientation of the aluminum in the eutectic to that of the primary aluminum dendrites, the nucleation and growth mechanism of the eutectic solidification in A357 cast alloy was determined. The eutectic Si phase of the modified sample nucleates on the heterogeneous nuclei located in the region between primary α-Al dendrites and grows up, while the eutectic Si phase of the sample without modification nucleates on the primary α-Al dendrites and grows up.


2019 ◽  
Vol 6 (6) ◽  
pp. 066515
Author(s):  
Bo Jiang ◽  
Ze-Sheng Ji ◽  
Hong-Yu Xu ◽  
Mao-Liang Hu ◽  
Yong-Bing Zhang ◽  
...  

2016 ◽  
Vol 682 ◽  
pp. 10-17 ◽  
Author(s):  
Antoni Woźnicki ◽  
Dariusz Leśniak ◽  
Grzegorz Włoch ◽  
Alicja Wojtyna ◽  
Monika Zabrzańska

In the paper, the influence of homogenization parameters on the microstructure and properties of the 5019 alloy DC-cast billets was analysed. At the first stage, the microstructure of the alloy in as-cast state was investigated using SEM/EDS technique. Additionally, a DSC test and hardness measurements were performed. In the as-cast material, the presence of the dendritic microstructure with a pronounced microsegregation of magnesium in the dendrites cross-section was found. Subsequently, the specimens were subjected to laboratory homogenization experiments, with different soaking conditions and water quenching. The microstructural effects of the investigated variants of homogenization were evaluated using the same techniques as in the case of the as-cast alloy. It was found that after homogenization, with soaking at the temperature of 530 °C for 6 hours, the microsegregation is eliminated and the concentration of magnesium in the grains centres is over two times greater than in the dendrites cores before annealing. The solidus temperature rises by about 12 °C in comparison to the as-cast state. Neither extending the soaking time nor rising the temperature contributes to a further increase of the solidus temperature, or the magnesium concentration in the grains interiors. However, the tendency of dispersoids to grow and the change of Fe-bearing constituents chemical composition were observed after the high temperature, or prolonged annealing variants.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6018
Author(s):  
Bandar Alzahrani ◽  
Mohamed M. El-Sayed Seleman ◽  
Mohamed M. Z. Ahmed ◽  
Ebtessam Elfishawy ◽  
Adham M. Z. Ahmed ◽  
...  

In the current investigation, additive friction stir-deposition (AFS-D) of as-cast hypoeutectic A356 Al alloy was conducted. The effect of feeding speeds of 3, 4, and 5 mm/min at a constant rotational speed of 1200 rpm on the macrostructure, microstructure, and hardness of the additive manufacturing parts (AMPs) was investigated. Various techniques (OM, SEM, and XRD) were used to evaluate grain microstructure, presence phases, and intermetallics for the as-cast material and the AMPs. The results showed that the friction stir deposition technique successfully produced sound additive manufactured parts at all the applied feeding speeds. The friction stir deposition process significantly improved the microstructure of the as-cast alloy by eliminating porosity and refining the dendritic α-Al grains, eutectic Si phase, and the primary Si plates in addition to intermetallic fragmentation. The mean values of the grain size of the produced AMPs at the feeding speeds of 3, 4, and 5 mm/min were 0.62 ± 0.1, 1.54 ± 0.2, and 2.40 ± 0.15 µm, respectively, compared to the grain size value of 30.85 ± 2 for the as-cast alloy. The AMPs exhibited higher hardness values than the as-cast A356 alloy. The as-cast A356 alloy showed highly scattered hardness values between 55 and 75.8 VHN. The AMP fabricated at a 3 mm/min feeding speed exhibited the maximum hardness values between 88 and 98.1 VHN.


Author(s):  
Yanru Lu ◽  
Laura N. Bartlett ◽  
Ronald J. O'Malley ◽  
Simon N. Lekakh

2007 ◽  
Vol 345-346 ◽  
pp. 633-636 ◽  
Author(s):  
Yong Nam Kwon ◽  
Kyu Hong Lee ◽  
Sung Hak Lee

The present study aims at investigating the effects of microstructure on fracture toughness of two A356 Al alloys. These A356 alloys were fabricated by casting processes such as rheo-casting and casting-forging, and their mechanical properties and fracture toughness were analyzed in relation with microfracture mechanisms. All the cast A356 alloys contained eutectic Si particles mainly segregated along solidification cells, and the distribution of Si particles was modified by the casting-forging process. Microfracture observation results revealed that eutectic Si particles segregated along cells were cracked first, but that Al matrix played a role in blocking crack propagation. Tensile properties and fracture toughness of the cast-forged alloys having homogeneous distribution of eutectic Si particles were superior to those of the rheo-cast alloy.


2017 ◽  
Vol 62 (4) ◽  
pp. 2433-2440 ◽  
Author(s):  
M. Król ◽  
T. Mikuszewski ◽  
D. Kuc ◽  
T. Tański ◽  
E. Hadasik

AbstractThe paper presents the results of the influence of commercial TiBor and AlSr10 master alloys on the refine the grains size, hardness and crystallisation process based on the thermal-derivation analysis of light cast magnesium-lithium-aluminium alloys. The effects of TiBor and AlSr10 content on the characteristic parameters of the crystallisation process of Mg-Li-Al alloys were investigated by thermal-derivative analysis (TDA). Microstructural evaluations were identified by light microscope, X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy.The results showed that the addition of TiBor master alloy reduced the grain size of Mg-9Li-1.5Al cast alloy from 900 μm to 500 μm, while the addition of AlSr10 master alloy reduced the grain size of investigated cast alloy from 900 μm to 480 μm. Moreover, an addition of TiBor and AlSr10 simultaneously reduced the grain size from 900 μm to 430 μm.Results from the thermal-derivative analysis showed that the addition of grain refinement causes a decrease in nucleation temperature and solidus temperature.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
M. H. Abdelaziz ◽  
H. W. Doty ◽  
S. Valtierra ◽  
F. H. Samuel

In this article, the volume fraction of intermetallic compounds in Zr-containing 354-type Al-Si-Cu-Mg alloys, characteristics of eutectic Si particles, and tensile, hardness, and impact properties have been evaluated with varying Ni and Mn contents and combination. The results revealed that additions of Ni and Mn in different amounts and combinations increased the volume fraction of intermetallic compounds in the tailored alloys, compared to the base alloy (cf. 12.21% for 4% Ni-containing alloy with 2.5% for base alloy), producing a significant effect on the mechanical performance. The proposed additions enhanced the mechanical performance of the alloys, namely, the ambient- and elevated-temperature tensile properties, hardness values, and impact properties. For the Mn-containing alloys, the improvement in properties was attributed to the formation of sludge particles in the form of blocky α-Al15(Fe,Mn)3Si2 alongside the script-like α-iron phase that resisted crack propagation. The precipitation of Ni-bearing phases such as Al9FeNi, Al3CuNi, and Al3Ni in the Ni-containing alloys improved the mechanical properties through hindering cracks propagation. Interestingly, addition of 0.75 wt.% Mn to the base alloy proved to be competitive in strength values to the addition of 2 and 4 wt.% Ni, and better in terms of ductility values. The investigations showed that the variations in hardness and impact values follow the same trend as variations in the percentage volume fraction of intermetallic compounds, i.e., maximum property value is associated to the alloy with highest volume fraction of intermetallic compounds. Furthermore, the impact properties showed higher dependency on Al2Cu phase particles rather than the eutectic Si particles.


2014 ◽  
Vol 782 ◽  
pp. 365-368
Author(s):  
Mária Chalupová ◽  
Eva Tillová ◽  
Mária Farkašová

The present study was performed on primary AlSi10MgMn cast alloy to analyze the morphology and composition of complex microstructure of the intermetallic phases. AlSi10MgMn cast alloy is a typical casting alloy used for parts with thin walls and complex geometry. It offers good strength, hardness and dynamic properties and is therefore also used for parts subject to high loading. In this study, several methods were used such as: optical light microscopy (LM) and scanning (SEM) electron microscopy in combination with EDX analysis using standard etched or deep etched sample to identify intermetallic. Alloy was analyzed in as-cast state (rapidly cooled right after casting) and after T6 heat treatment. T6 treatment (solution annealing, quenching and age hardening) improves mechanical properties. The results show that the microstructure of AlSi10MgMn alloy consisted of several phases: α-matrix, eutectic, Fe-rich intermetallic phases (Al15(FeMn)3Si2, Al5FeSi), Mg2Si, Al8FeMg3Si6 and of other phases in formation. Iron-rich intermetallic phases are well known to be strongly influential on mechanical properties in Al-Si alloys. The most common morphology was the long platelets of Al5FeSi phase. After heat treatment were observed spheroidisation of eutectic Si, dissolution and fragmentation of Fe-phases.


Sign in / Sign up

Export Citation Format

Share Document