scholarly journals Rapid heating injection moulding: An experimental surface temperature study

2021 ◽  
Vol 93 ◽  
pp. 106928
Author(s):  
R. Sánchez ◽  
A. Martinez ◽  
D. Mercado ◽  
A. Carbonel ◽  
J. Aisa
Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 904
Author(s):  
Han Na Choi ◽  
Seung Hyun Jee ◽  
Jaehwan Ko ◽  
Dong Joo Kim ◽  
Sun Hee Kim

A high-stretch positive temperature coefficient (PTC) surface heating textile (PTC-SHT) was fabricated using a composite of PTC powder and multiwall carbon nanotubes (MWCNTs). The PTC-SHT (heating area = 100 × 100 mm2) was produced by screen-printing the PTC-MWCNT composite paste onto a high-stretch textile with embroidered electrodes. Overall, the temperature increased to 56.1 °C with a power consumption of 5 W over 7 min. Subsequently, the surface temperature of the PTC-SHT remained constant despite the continued decrease in power consumption. This indicated that heating was accompanied by an increase in resistance of the PTC-SHT, which is typical of this process—i.e., heating to a constant temperature under a constant voltage over an extended period of time. In addition, 4.63 W power was required to heat the PTC-SHT surface from an external temperature of 5 to 45 °C in 10 min, after which stable low-temperature heat generation behavior was observed at a constant temperature of 50 °C, which was maintained over 40 min. In contrast, negative temperature coefficient (NTC) behavior has been observed in an NTC-SHT consisting of only MWCNTs, where a slow heating rate in the initial stage of power application and a continuous increase in surface temperature and power consumption were noted. The PTC-SHT consumed less power for heat generation than the NTC-SHT and exhibited rapid heating behavior in the initial stage of power application. The heat generation characteristics of the PTC-SHT were maintained at 95% after 100,000 cycles of 20% stretch–contraction testing, and the heating temperature remained uniformly distributed within ± 2 °C across the entire heating element. These findings demonstrated that an SHT with PTC characteristics is highly suitable for functional warm clothing applications that require low power consumption, rapid heating, stable warmth, and high durability.


2012 ◽  
Vol 730-732 ◽  
pp. 969-974 ◽  
Author(s):  
Mauro C.R. Garcia ◽  
Aurelio C.S. Netto ◽  
A.J. Pontes

In this study the influence of nanoclay and glass fibre in the shrinkage and ejection forces in polypropylene matrix in tubular parts moulded by injection moulding were analysed. An instrumented mould was used to measure the part surface temperature and ejection forces in tubular parts. The materials used were a polypropylene homopolymer Domolen 1100L nanoclay for polyolefin nanocomposites P-802 Nanomax in percentages of 2%, 6% and 10% and a polypropylene homopolymer with content of 10% of glass fibre Domolen P1-013-V10-N and 30% of glass fibre Domolen P1-102-V30-N with 2% of nanoclay. The shrinkage and ejection forces were analysed. The results show that the incorporation of nanoclays decreases the shrinkage and ejection forces whereas glass fibre decreases the shrinkage and increase ejection forces due to the increase of the elastic modulus. The nanoclays decrease the ejection force when compared with glass fibre and pure PP. The effects of nanoclays are less pronounced than those of glass fibre. The effect of the mould temperatures on the ejection forces in the mouldings produced with the mentioned materials were also analysed. The ejection force decreases with the increase of the temperature of the mould.


Author(s):  
T.S. Savage ◽  
R. Ai ◽  
D. Dunn ◽  
L.D. Marks

The use of lasers for surface annealing, heating and/or damage has become a routine practice in the study of materials. Lasers have been closely looked at as an annealing technique for silicon and other semiconductors. They allow for local heating from a beam which can be focused and tuned to different wavelengths for specific tasks. Pulsed dye lasers allow for short, quick bursts which can allow the sample to be rapidly heated and quenched. This short, rapid heating period may be important for cases where diffusion of impurities or dopants may not be desirable.At Northwestern University, a Candela SLL - 250 pulsed dye laser, with a maximum power of 1 Joule/pulse over 350 - 400 nanoseconds, has been set up in conjunction with a Hitachi UHV-H9000 transmission electron microscope. The laser beam is introduced into the surface science chamber through a series of mirrors, a focusing lens and a six inch quartz window.


2019 ◽  
pp. 9-13
Author(s):  
V.Ya. Mendeleyev ◽  
V.A. Petrov ◽  
A.V. Yashin ◽  
A.I. Vangonen ◽  
O.K. Taganov

Determining the surface temperature of materials with unknown emissivity is studied. A method for determining the surface temperature using a standard sample of average spectral normal emissivity in the wavelength range of 1,65–1,80 μm and an industrially produced Metis M322 pyrometer operating in the same wavelength range. The surface temperature of studied samples of the composite material and platinum was determined experimentally from the temperature of a standard sample located on the studied surfaces. The relative error in determining the surface temperature of the studied materials, introduced by the proposed method, was calculated taking into account the temperatures of the platinum and the composite material, determined from the temperature of the standard sample located on the studied surfaces, and from the temperature of the studied surfaces in the absence of the standard sample. The relative errors thus obtained did not exceed 1,7 % for the composite material and 0,5% for the platinum at surface temperatures of about 973 K. It was also found that: the inaccuracy of a priori data on the emissivity of the standard sample in the range (–0,01; 0,01) relative to the average emissivity increases the relative error in determining the temperature of the composite material by 0,68 %, and the installation of a standard sample on the studied materials leads to temperature changes on the periphery of the surface not exceeding 0,47 % for composite material and 0,05 % for platinum.


Sign in / Sign up

Export Citation Format

Share Document