Improvement of physicochemical properties of Fe2O3/MgO nanomaterials by hydrothermal treatment for dye removal from industrial wastewater

2013 ◽  
Vol 249 ◽  
pp. 225-233 ◽  
Author(s):  
Hala R. Mahmoud ◽  
Sahar A. El-Molla ◽  
M. Saif
2021 ◽  
Vol 13 (4) ◽  
pp. 1970
Author(s):  
Sara Yasipourtehrani ◽  
Vladimir Strezov ◽  
Tao Kan ◽  
Tim Evans

Blast Furnace Slag (BFS) is a by-product of the iron ore processing industry with potential to be used in different industrial applications. In this research, BFS was used to examine its ability for dye removal from wastewater. The efficiency of two types of BFS samples for removal of cationic methylene blue (MB) and acidic methyl orange (MO) dyes was investigated and results found that the optimal conditions for treatment of wastewater were 80 g/L of adsorbent dose and 1 h of treatment time for both dyes. BFS was found to be more effective for removal of the acidic MO dye than the cationic MB dye. Under shorter residence times, the results showed reverse trends with BFS samples removing higher concentrations of MB than MO. The BFS chemistry had additional impacts on the efficiency of dye removal. Higher basicity of BFS had lower dye removal ability for adsorption of acidic dye when applied at smaller concentrations, while for cationic dye when applied at higher concentrations. The results showed that BFS has potential role for pre-treatment of industrial wastewater contaminated with dyes and may contribute to reduced use of more expensive adsorbents, such as activated carbons.


2015 ◽  
Vol 1113 ◽  
pp. 818-822
Author(s):  
M. Siti Zuraida ◽  
C.R. Nurhaslina ◽  
K.H. Ku Halim

Water is the most precious natural resource and it is impossible to live without it. However, the potential beneficial uses of water are lost due to changes in its composition as a result of human activity especially from industrial effluents. It is estimated about 22% of the total volume of industrial wastewater is produced by the textiles industry, one of the largest industrial producers of high volume wastewater primarily in the dyeing and finishing operations. This industry engenders a huge contribution to Malaysia’s economy development due to high demands locally and abroad. However, little awareness on the importance of clean practices in the production of Batik among Batik entrepreneurs has caused them to take improper actions by discharging the effluents without proper treatment. Currently, many technologies are available to solve the problems caused by textile industry. However, the best methods differ from plant to plant depending on size, type of waste and degree of treatment needed. This article reviews the available technologies and suggests an effective, cheaper alternative for dye removal and decolorisation applicable on large scale.


2015 ◽  
Vol 7 (2) ◽  
pp. 39 ◽  
Author(s):  
Amjed Oda ◽  
Hameed Ali ◽  
Abbas Lafta ◽  
Hussein Esmael ◽  
Ali Jameel ◽  
...  

The current work involves modification of zinc oxide by doping silver, this was achieved by photodeposition method. Modified zinc oxide was investigated using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Both of ZnO and Ag doped ZnO was fabricated on a cotton texture. The photocatalytic activity of these materials was investigated by following the decolorization of congo red from simulated industrial wastewater. The decolorization of congo red over fabricated-ZnO-Ag was more efficient in comparison with non- fabricated catalysts. Different reaction parameters were undertaken including the effect of pH of the solution, irradiation time and the effect of light intensity. Complete dye removal over fabricated materials took three hours while it took 4.5 for non-fabricated materials.


Author(s):  
Andreea BONDAREV

The pollution of industrial wastewater with heavy metals and dyes is a highly important environmental problem, because of the propagation of the pollution and because of its unfavourable consequences. Sustainable wastewater treatment is one of the foremost challenges of this century. Various waste materials characterized by lignocellulose composition are low cost, non-conventional adsorbent for biosorptive removal of heavy metal ions from aqueous solutions. Recent studies point to the potential of use of low-cost materials (zeolites, carrot residue and green tea waste) as effective sorbents for the removal of Cd2+ from aqueous solution. The use of bentonite to the treatment of wastewater containing reactive dyes in aqueous solutions requires the modification of the hydrophilic surface by inorganic cations with organic cations exchange. The use of bentonite as an inexpensive sorbent for the removal of Remazol Brilliant Blue R (RBBR) from synthetic aqueous solutions has been also presented in recent studies. The influence of some parameters such as: pH, initial dye concentration, sorbent dose on sorption kinetics for dye removal has been reviewed in this paper.


Author(s):  
Mahmood Al Ramahi ◽  
Sándor Beszédes ◽  
Gábor Keszthelyi-Szabó

AbstractIndustrial wastewater is a growing environmental challenge due to its high concentrations of organics and its limited biological degradability. Up to date, however, no published work discussed industrial wastewater characterization, which is the focus of this study. Moreover, the effect of hydrothermal treatment on the chemical oxygen demand (COD) removal and the soluble chemical oxygen demand (SCOD) release was investigated in this work. Wastewater samples were collected from different industrial sites and characterized in order to determine their initial properties. It was summarized that the salinity of wastewater estimated by EC was relatively low, and its pH values were in the acceptable range. On the other hand, however, high values of sodium absorption ratio (SAR) were obtained in all samples post to hydrothermal treatment. Nonetheless, our results revealed higher SCOD release post to hydrothermal treatment suggesting better efficiency of COD removal obtained by this treatment technique.


Sign in / Sign up

Export Citation Format

Share Document