Flattening of surface roughness in ultrashort pulsed laser micro-milling

2018 ◽  
Vol 51 ◽  
pp. 331-337 ◽  
Author(s):  
L. Romoli
2015 ◽  
Vol 20 (5) ◽  
pp. 055006
Author(s):  
Jing Liu ◽  
Peijun Lü ◽  
Yuchun Sun ◽  
Yong Wang

2008 ◽  
Vol 36 (Supplement) ◽  
pp. 201-202
Author(s):  
Yasuhiro Awatsuji ◽  
Kenzo Nishio ◽  
Shogo Ura ◽  
Toshihiro Kubota

2021 ◽  
Vol 11 (3) ◽  
pp. 1253
Author(s):  
Evaggelos Kaselouris ◽  
Kyriaki Kosma ◽  
Yannis Orphanos ◽  
Alexandros Skoulakis ◽  
Ioannis Fitilis ◽  
...  

A three-dimensional, thermal-structural finite element model, originally developed for the study of laser–solid interactions and the generation and propagation of surface acoustic waves in the macroscopic level, was downscaled for the investigation of the surface roughness influence on pulsed laser–solid interactions. The dimensions of the computational domain were reduced to include the laser-heated area of interest. The initially flat surface was progressively downscaled to model the spatial roughness profile characteristics with increasing geometrical accuracy. Since we focused on the plastic and melting regimes, where structural changes occur in the submicrometer scale, the proposed downscaling approach allowed for their accurate positioning. Additionally, the multiscale simulation results were discussed in relation to experimental findings based on white light interferometry. The combination of this multiscale modeling approach with the experimental methodology presented in this study provides a multilevel scientific tool for an in-depth analysis of the influence of heat parameters on the surface roughness of solid materials and can be further extended to various laser–solid interaction applications.


Author(s):  
Florian Kuisat ◽  
Fernando Lasagni ◽  
Andrés Fabián Lasagni

AbstractIt is well known that the surface topography of a part can affect its mechanical performance, which is typical in additive manufacturing. In this context, we report about the surface modification of additive manufactured components made of Titanium 64 (Ti64) and Scalmalloy®, using a pulsed laser, with the aim of reducing their surface roughness. In our experiments, a nanosecond-pulsed infrared laser source with variable pulse durations between 8 and 200 ns was applied. The impact of varying a large number of parameters on the surface quality of the smoothed areas was investigated. The results demonstrated a reduction of surface roughness Sa by more than 80% for Titanium 64 and by 65% for Scalmalloy® samples. This allows to extend the applicability of additive manufactured components beyond the current state of the art and break new ground for the application in various industrial applications such as in aerospace.


2021 ◽  
Vol 114 (3-4) ◽  
pp. 883-897
Author(s):  
Zhanfei Zhang ◽  
Wenhu Wang ◽  
Chengcheng Jin ◽  
Ruisong Jiang ◽  
Yifeng Xiong ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samuel McPhee ◽  
Alexander Groetsch ◽  
Jonathan D. Shephard ◽  
Uwe Wolfram

AbstractThe underlying constraint of ultrashort pulsed laser ablation in both the clinical and micromachining setting is the uncertainty regarding the impact on the composition of material surrounding the ablated region. A heat model representing the laser-tissue interaction was implemented into a finite element suite to assess the cumulative temperature response of bone during ultrashort pulsed laser ablation. As an example, we focus on the extraction of mineralised collagen fibre micropillars. Laser induced heating can cause denaturation of the collagen, resulting in ultrastructural loss which could affect mechanical testing results. Laser parameters were taken from a used micropillar extraction protocol. The laser scanning pattern consisted of 4085 pulses, with a final radial pass being 22 $$\upmu {\text {m}}$$ μ m away from the micropillar. The micropillar temperature was elevated to 70.58 $$^{\circ }{\text {C}}$$ ∘ C , remaining 79.42 $$^{\circ }{\text {C}}$$ ∘ C lower than that of which we interpret as an onset for denaturation. We verified the results by means of Raman microscopy and Energy Dispersive X-ray Microanalysis and found the laser-material interaction had no effect on the collagen molecules or mineral nanocrystals that constitute the micropillars. We, thus, show that ultrashort pulsed laser ablation is a safe and viable tool to fabricate bone specimens for mechanical testing at the micro- and nanoscale and we provide a computational model to efficiently assess this.


Sign in / Sign up

Export Citation Format

Share Document