scholarly journals Signature-based and Machine-Learning-based Web Application Firewalls: A Short Survey

2021 ◽  
Vol 189 ◽  
pp. 359-367
Author(s):  
Simon Applebaum ◽  
Tarek Gaber ◽  
Ali Ahmed
Author(s):  
Navid Asadizanjani ◽  
Sachin Gattigowda ◽  
Mark Tehranipoor ◽  
Domenic Forte ◽  
Nathan Dunn

Abstract Counterfeiting is an increasing concern for businesses and governments as greater numbers of counterfeit integrated circuits (IC) infiltrate the global market. There is an ongoing effort in experimental and national labs inside the United States to detect and prevent such counterfeits in the most efficient time period. However, there is still a missing piece to automatically detect and properly keep record of detected counterfeit ICs. Here, we introduce a web application database that allows users to share previous examples of counterfeits through an online database and to obtain statistics regarding the prevalence of known defects. We also investigate automated techniques based on image processing and machine learning to detect different physical defects and to determine whether or not an IC is counterfeit.


2021 ◽  
pp. 1-15
Author(s):  
O. Basturk ◽  
C. Cetek

ABSTRACT In this study, prediction of aircraft Estimated Time of Arrival (ETA) is proposed using machine learning algorithms. Accurate prediction of ETA is important for management of delay and air traffic flow, runway assignment, gate assignment, collaborative decision making (CDM), coordination of ground personnel and equipment, and optimisation of arrival sequence etc. Machine learning is able to learn from experience and make predictions with weak assumptions or no assumptions at all. In the proposed approach, general flight information, trajectory data and weather data were obtained from different sources in various formats. Raw data were converted to tidy data and inserted into a relational database. To obtain the features for training the machine learning models, the data were explored, cleaned and transformed into convenient features. New features were also derived from the available data. Random forests and deep neural networks were used to train the machine learning models. Both models can predict the ETA with a mean absolute error (MAE) less than 6min after departure, and less than 3min after terminal manoeuvring area (TMA) entrance. Additionally, a web application was developed to dynamically predict the ETA using proposed models.


2021 ◽  
Vol 22 (5) ◽  
pp. 2704
Author(s):  
Andi Nur Nilamyani ◽  
Firda Nurul Auliah ◽  
Mohammad Ali Moni ◽  
Watshara Shoombuatong ◽  
Md Mehedi Hasan ◽  
...  

Nitrotyrosine, which is generated by numerous reactive nitrogen species, is a type of protein post-translational modification. Identification of site-specific nitration modification on tyrosine is a prerequisite to understanding the molecular function of nitrated proteins. Thanks to the progress of machine learning, computational prediction can play a vital role before the biological experimentation. Herein, we developed a computational predictor PredNTS by integrating multiple sequence features including K-mer, composition of k-spaced amino acid pairs (CKSAAP), AAindex, and binary encoding schemes. The important features were selected by the recursive feature elimination approach using a random forest classifier. Finally, we linearly combined the successive random forest (RF) probability scores generated by the different, single encoding-employing RF models. The resultant PredNTS predictor achieved an area under a curve (AUC) of 0.910 using five-fold cross validation. It outperformed the existing predictors on a comprehensive and independent dataset. Furthermore, we investigated several machine learning algorithms to demonstrate the superiority of the employed RF algorithm. The PredNTS is a useful computational resource for the prediction of nitrotyrosine sites. The web-application with the curated datasets of the PredNTS is publicly available.


2021 ◽  
Vol 11 (9) ◽  
pp. 4266
Author(s):  
Md. Shahriare Satu ◽  
Koushik Chandra Howlader ◽  
Mufti Mahmud ◽  
M. Shamim Kaiser ◽  
Sheikh Mohammad Shariful Islam ◽  
...  

The first case in Bangladesh of the novel coronavirus disease (COVID-19) was reported on 8 March 2020, with the number of confirmed cases rapidly rising to over 175,000 by July 2020. In the absence of effective treatment, an essential tool of health policy is the modeling and forecasting of the progress of the pandemic. We, therefore, developed a cloud-based machine learning short-term forecasting model for Bangladesh, in which several regression-based machine learning models were applied to infected case data to estimate the number of COVID-19-infected people over the following seven days. This approach can accurately forecast the number of infected cases daily by training the prior 25 days sample data recorded on our web application. The outcomes of these efforts could aid the development and assessment of prevention strategies and identify factors that most affect the spread of COVID-19 infection in Bangladesh.


2022 ◽  
Vol 2 (14) ◽  
pp. 26-34
Author(s):  
Nguyen Manh Thang ◽  
Tran Thi Luong

Abstract—Almost developed applications tend to become as accessible as possible to the user on the Internet. Different applications often store their data in cyberspace for more effective work and entertainment, such as Google Docs, emails, cloud storage, maps, weather, news,... Attacks on Web resources most often occur at the application level, in the form of HTTP/HTTPS-requests to the site, where traditional firewalls have limited capabilities for analysis and detection attacks. To protect Web resources from attacks at the application level, there are special tools - Web Application Firewall (WAF). This article presents an anomaly detection algorithm, and how it works in the open-source web application firewall ModSecurity, which uses machine learning methods with 8 suggested features to detect attacks on web applications. Tóm tắt—Hầu hết các ứng dụng được phát triển có xu hướng trở nên dễ tiếp cận nhất có thể đối với người dùng qua Internet. Các ứng dụng khác nhau thường lưu trữ dữ liệu trên không gian mạng để làm việc và giải trí hiệu quả hơn, chẳng hạn như Google Docs, email, lưu trữ đám mây, bản đồ, thời tiết, tin tức,... Các cuộc tấn công vào tài nguyên Web thường xảy ra nhất ở tầng ứng dụng, dưới dạng các yêu cầu HTTP/HTTPS đến trang web, nơi tường lửa truyền thống có khả năng hạn chế trong việc phân tích và phát hiện các cuộc tấn công. Để bảo vệ tài nguyên Web khỏi các cuộc tấn công ở tầng ứng dụng, xuất hiện các công cụ đặc biệt - Tường lửa Ứng dụng Web (WAF). Bài viết này trình bày thuật toán phát hiện bất thường và cách thức hoạt động của tường lửa ứng dụng web mã nguồn mở ModSecurity khi sử dụng phương pháp học máy với 8 đặc trưng được đề xuất để phát hiện các cuộc tấn công vào các ứng dụng web.


Author(s):  
Vetrivelan Pandu ◽  
Jagannath Mohan ◽  
T. S. Pradeep Kumar

Internet of things (IoT) has transformed greatly the improved way of business through machine-to-machine (M2M) communications. This vast network and its associated technologies have opened the doors to an increasing number of security threats which are dangerous to IoT and 5G wireless networks. The first part of this chapter presents instruction detection system (IDS) which detect the various attacks in 6LoWPAN layer. An IDS is to detect and analyze both inbound and outbound network traffic for abnormal activities. An IPS complements an IDS configuration by proactively inspecting a system's incoming traffic to weed out malicious requests. A typical IPS configuration uses web application firewalls and traffic filtering solutions to secure applications. An IPS prevents attacks by dropping malicious packets, blocking offending IPs and alerting security personnel to potential threats. Machine learning (ML)-based instruction detection and prevention system (IDPS) is proposed and implemented in Contiki simulation environment.


2022 ◽  
pp. 383-393
Author(s):  
Lokesh M. Giripunje ◽  
Tejas Prashant Sonar ◽  
Rohit Shivaji Mali ◽  
Jayant C. Modhave ◽  
Mahesh B. Gaikwad

Risk because of heart disease is increasing throughout the world. According to the World Health Organization report, the number of deaths because of heart disease is drastically increasing as compared to other diseases. Multiple factors are responsible for causing heart-related issues. Many approaches were suggested for prediction of heart disease, but none of them were satisfactory in clinical terms. Heart disease therapies and operations available are so costly, and following treatment, heart disease is also costly. This chapter provides a comprehensive survey of existing machine learning algorithms and presents comparison in terms of accuracy, and the authors have found that the random forest classifier is the most accurate model; hence, they are using random forest for further processes. Deployment of machine learning model using web application was done with the help of flask, HTML, GitHub, and Heroku servers. Webpages take input attributes from the users and gives the output regarding the patient heart condition with accuracy of having coronary heart disease in the next 10 years.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Svetlana Vinogradova ◽  
Sachit D. Saksena ◽  
Henry N. Ward ◽  
Sébastien Vigneau ◽  
Alexander A. Gimelbrant

Sign in / Sign up

Export Citation Format

Share Document