scholarly journals Shaking table test of scaled model of Protiron dry stone masonry structure

2017 ◽  
Vol 199 ◽  
pp. 3386-3391 ◽  
Author(s):  
Željana Nikolić ◽  
Lidija Krstevska ◽  
Pavao Marović ◽  
Hrvoje Smoljanović
2014 ◽  
Vol 11 (4) ◽  
pp. 357-364
Author(s):  
Hui Su ◽  
Jian Wang ◽  
Xinpei Jiang ◽  
Yang Tan

Based on the shake table test on "tie column-ring beam-cast-in-place slab" construction waste recycled brick masonry structure, a 1/3 scaled model of 4 stories is tested to analyze the seismic behavior of the multi-storey masonry structure. The test is conducted with EL-Centro seismic wave, Taft wave and artificial wave to simulate the damages observed and the seismic response under different earthquake levels. On the basis of test results, the seismic performance of the model is good and the overall structure could satisfy seismic fortification requirements in the region of intensity 8. At the same time, there was no obvious difference between this masonry structure and recycled aggregate concrete block masonry structure. The lintel of the door and window damage seriously. The base damages more easily than the superstructure. Masonry structure with construction waste recycled brick can satisfy the requirement of the masonry structure buildings in eight degree of aseismatic design area.


2014 ◽  
Vol 580-583 ◽  
pp. 1463-1466
Author(s):  
Yong Duo Liang ◽  
Xun Guo ◽  
Hua Wei Yi ◽  
Yong Zhen Li ◽  
Jin Zheng Jiang

Bottom-business multi-story masonry structure is widely used in small and middle towns in the southward in China. In the downtown of Beichuan county which affected by Wenchuan earthquake, more than 80% of this kind of building collapsed. But the Apartment of Beichuan Telecommunication Bureau behaved well earthquake resistant capacity with a moderate damage in the earthquake. The obvious difference between this building and others is the setting of winged columns in the front longitudinal wall of the first floor. For proving the influence of these members in the structure seismic capacity, the earthquake simulation shaking table test of 2 1/5 reduced scale models were designed and carried out. The models dynamic response, acceleration, displacement and strain were measured and collected, that model with winged columns behave well was testified. And the reinforcement method of balancing stiffness and increasing ductility is put forward. The results provide a foundation for the retrofitting design of the existing houses.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Weiwei Li ◽  
Weiqing Liu ◽  
Shuguang Wang ◽  
Dongsheng Du

The improvement effect of a new strengthening strategy on dynamic action of masonry structure, by installing prefabricated concrete walls on the outer facades, is validated by shaking table test presented in this paper. We carried out dynamic tests of two geometrically identical five-story reduced scaled models, including an unstrengthened and a strengthened masonry model. The experimental analysis encompasses seismic performances such as cracking patterns, failure mechanisms, amplification factors of acceleration, and displacements. The results show that the strengthened masonry structure shows much more excellent seismic capacity when compared with the unstrengthened one.


2013 ◽  
Vol 8 (3) ◽  
pp. 349-375 ◽  
Author(s):  
Guido Magenes ◽  
Andrea Penna ◽  
Ilaria Enrica Senaldi ◽  
Maria Rota ◽  
Alessandro Galasco

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaojun Li ◽  
Chenning Song ◽  
Guoliang Zhou ◽  
Chao Wei ◽  
Ming Lu

Water tank is one important component of passive containment cooling system (PCS) of nuclear island building. The sloshing frequency of water is much less than structure frequency and large-amplitude sloshing occurs easily when subjected to seismic loadings. Therefore, the sloshing dynamics and fluid-structure interaction (FSI) effect of water tank should be considered when the dynamic response of nuclear island building is analyzed. A 1/16 scaled model was designed and the shaking table test was done, in which the hydrodynamic pressure time histories and attenuation data of wave height were recorded. Then the sloshing frequencies and 1st sloshing damping ratio were recognized. Moreover, modal analysis and time history analysis of numerical model were done by ADINA software. By comparing the sloshing frequencies and hydrodynamic pressures, it is proved that the test method is reasonable and the formulation of potential-based fluid elements (PBFE) can be used to simulate FSI effect of nuclear island building.


2012 ◽  
Vol 166-169 ◽  
pp. 730-733 ◽  
Author(s):  
Fei Zhu ◽  
Feng Lai Wang ◽  
Xu Jie Sun ◽  
Y. Zhao

Unreinforced stone masonry pagodas have great cultural value and should be detailed investigation its mechanical properties. These buildings were not designed to resist earthquakes in ancient China, at least not in the way of current methods. The objectives of this research were to understand the dynamic behavior of unreinforced stone masonry pagoda and its seismic performance. To accomplish these, a 1/12 scale model of China Dinosaurs Pagoda was constructed and tested on shaking table. The octangle model height is 3.96m, with aspect ratio of height to width is 2.93, both parameters exceed the stipulated limit of Code for Seismic Design of Building. The model built with the stones and motars similar to the prototype materials and the arrangements. Its dynamic behavior and seismic performance were tested on the shaking table towards the free vibration and three earthquake waves. The experimental program adopted in the research is explained in this paper.


2010 ◽  
Vol 163-167 ◽  
pp. 1281-1285
Author(s):  
Bin Wang ◽  
Huan Jun Jiang ◽  
Jian Bao Li ◽  
Wen Sheng Lu ◽  
Xi Lin Lu

The reinforced concrete (RC) frame-tube structure considered in the study has two towers with lapping transfer columns. The lapping transfer columns, considering aesthetic requirement in elevation, lead to a complex vertical force transfer system. The large irregularity in elevation, according to Chinese code, necessitates a detailed study. A 1/15-scaled model of the high-rise building was tested on a shaking table to evaluate its seismic performance. The model was subjected to earthquake inputs representing frequent, basic, rare, and extremly rare earthquakes. The results of shaking table test in terms of the global and local responses as well as the dynamic properties are presented. The tests demonstrate that the designed structural system satisfies the pre-defined performance objectives and the lapping transfer columns have good seismic peformance. To better control seismic damages of the building, some suggestions for improving the design of this structure are also put forward at last.


Buildings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 43 ◽  
Author(s):  
José Lemos

Discrete element models are a powerful tool for the analysis of masonry, given their ability to represent the discontinuous nature of these structures, and to simulate the most common deformation and failure modes. In particular, discrete elements allow the assessment of the seismic behavior of masonry construction, using either pushover analysis or time domain dynamic analysis. The fundamental concepts of discrete elements are concisely presented, stressing the issues related to masonry modeling. Methods for generation of block models are discussed, with some examples for the case of irregular stone masonry walls. A discrete element analysis of a shaking table test performed on a traditional stone masonry house is discussed, as a demonstration of the capabilities of these models. Practical application issues are examined, namely the computational requirements for dynamic analysis.


2012 ◽  
Vol 238 ◽  
pp. 659-662 ◽  
Author(s):  
Gong Lian Chen ◽  
Lin Jun Si

The problems in the mechanical test of masonry structure model were discussed in this paper, including the masonry material, similar relationship, shaking table test device, judgment of wall cracking and number of cycles in pseudo-static loading test. The conclusions are: (1) for the masonry material mechanical test, usually the size decreased the strength increased, but if the laying method and appropriate adjustments in the process of the test mixture ratio, the size effect can be greatly reduced; (2) In the dynamic test of the masonry structure, for the gravity distortion model, the common way is the external prestressing method, but in this method the tension force is not constant, which is differ from the actual situation; (3) The wall cracking can be judged when the main tension crack of the wall appeared; (4) The loading cycle in the pseudo-static test of masonry wall would be twice.


Sign in / Sign up

Export Citation Format

Share Document