Role of environmental changes in the spread of malaria in Europe during the Holocene

2006 ◽  
Vol 150 (1) ◽  
pp. 21-27 ◽  
Author(s):  
R. Sallares
Author(s):  
Ebony I Weems ◽  
Noé U de la Sancha ◽  
Laurel J Anderson ◽  
Carlos Zambrana-Torrelio ◽  
Ronaldo P Ferraris

Synopsis We argue that the current environmental changes stressing the Earth’s biological systems urgently require study from an integrated perspective to reveal unexpected, cross-scale interactions, particularly between microbes and macroscale phenomena. Such interactions are the basis of a mechanistic understanding of the important connections between deforestation and emerging infectious disease, feedback between ecosystem disturbance and the gut microbiome, and the cross-scale effects of environmental pollutants. These kinds of questions can be answered with existing techniques and data, but a concerted effort is necessary to better coordinate studies and data sets from different disciplines to fully leverage their potential.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 682
Author(s):  
Serena Coppola ◽  
Carmen Avagliano ◽  
Antonio Calignano ◽  
Roberto Berni Canani

Worldwide obesity is a public health concern that has reached pandemic levels. Obesity is the major predisposing factor to comorbidities, including type 2 diabetes, cardiovascular diseases, dyslipidemia, and non-alcoholic fatty liver disease. The common forms of obesity are multifactorial and derive from a complex interplay of environmental changes and the individual genetic predisposition. Increasing evidence suggest a pivotal role played by alterations of gut microbiota (GM) that could represent the causative link between environmental factors and onset of obesity. The beneficial effects of GM are mainly mediated by the secretion of various metabolites. Short-chain fatty acids (SCFAs) acetate, propionate and butyrate are small organic metabolites produced by fermentation of dietary fibers and resistant starch with vast beneficial effects in energy metabolism, intestinal homeostasis and immune responses regulation. An aberrant production of SCFAs has emerged in obesity and metabolic diseases. Among SCFAs, butyrate emerged because it might have a potential in alleviating obesity and related comorbidities. Here we reviewed the preclinical and clinical data that contribute to explain the role of butyrate in this context, highlighting its crucial contribute in the diet-GM-host health axis.


The Holocene ◽  
2021 ◽  
pp. 095968362110032
Author(s):  
Halinka Di Lorenzo ◽  
Pietro Aucelli ◽  
Giuseppe Corrado ◽  
Mario De Iorio ◽  
Marcello Schiattarella ◽  
...  

The Garigliano alluvial-coastal plain, at the Latium-Campania border (Italy), witnessed a long-lasting history of human-environment interactions, as demonstrated by the rich archaeological knowledge. With the aim of reconstructing the evolution of the landscape and its interaction with human activity during the last millennia, new pollen results from the coastal sector of the Garigliano Plain were compared with the available pollen data from other nearby sites. The use of pollen data from both the coastal and marine environment allowed integrating the local vegetation dynamics within a wider regional context spanning the last 8000 years. The new pollen data presented in this study derive from the analysis of a core, drilled in the coastal sector, which intercepted the lagoon-marshy environments that occurred in the plain as a response to the Holocene transgression and subsequent coastal progradation. Three radiocarbon ages indicate that the chronology of the analyzed core interval ranges from c. 7200 to c. 2000 cal yr BP. The whole data indicate that a dense forest cover characterized the landscape all along the Prehistoric period, when a few signs of human activity are recorded in the spectra, such as cereal crops, pasture activity and fires. The main environmental changes, forced by natural processes (coastal progradation) but probably enhanced by reclamation works, started from the Graeco-Roman period and led to the reduction of swampy areas that favoured the colonisation of the outer plain.


2015 ◽  
Vol 87 (3) ◽  
pp. 1717-1726 ◽  
Author(s):  
JULIANA WOJCIECHOWSKI ◽  
ANDRÉ A. PADIAL

One of the main goals of monitoring cyanobacteria blooms in aquatic environments is to reveal the relationship between cyanobacterial abundance and environmental variables. Studies typically correlate data that were simultaneously sampled. However, samplings occur sparsely over time and may not reveal the short-term responses of cyanobacterial abundance to environmental changes. In this study, we tested the hypothesis that stronger cyanobacteria x environment relationships in monitoring are found when the temporal variability of sampling points is incorporated in the statistical analyses. To this end, we investigated relationships between cyanobacteria and seven environmental variables that were sampled twice yearly for three years across 11 reservoirs, and data from an intensive monitoring in one of these reservoirs. Poor correlations were obtained when correlating data simultaneously sampled. In fact, the 'highly recurrent' role of phosphorus in cyanobacteria blooms is not properly observed in all sampling periods. On the other hand, the strongest correlation values for the total phosphorus x cyanobacteria relationship were observed when we used the variation of sampling points. We have also shown that environment variables better explain cyanobacteria when a time lag is considered. We conclude that, in cyanobacteria monitoring, the best approach to reveal determinants of cyanobacteria blooms is to consider environmental variability.


The Holocene ◽  
2018 ◽  
Vol 29 (1) ◽  
pp. 26-44 ◽  
Author(s):  
Manel Leira ◽  
Maria C Freitas ◽  
Tania Ferreira ◽  
Anabela Cruces ◽  
Simon Connor ◽  
...  

We examine the Holocene environmental changes in a wet dune slack of the Portuguese coast, Poço do Barbarroxa de Baixo. Lithology, organic matter, biological proxies and high-resolution chronology provide estimations of sediment accumulation rates and changes in environmental conditions in relation to sea-level change and climate variability during the Holocene. Results show that the wet dune slack was formed 7.5 cal. ka BP, contemporaneous with the last stages of the rapid sea-level rise. This depositional environment formed under frequent freshwater flooding and water ponding that allowed the development and post-mortem accumulation of abundant plant remains. The wetland evolved into mostly palustrine conditions over the next 2000 years, until a phase of stabilization in relative sea-level rise, when sedimentation rates slowed down to 0.04 mm yr−1, between 5.3 and 2.5 cal. ka BP. Later, about 0.8 cal. ka BP, high-energy events, likely due to enhanced storminess and more frequent onshore winds, caused the collapse of the foredune above the wetlands’ seaward margin. The delicate balance between hydrology (controlled by sea-level rise and climate change), sediment supply and storminess modulates the habitat’s resilience and ecological stability. This underpins the relevance of integrating past records in coastal wet dune slacks management in a scenario of constant adaptation processes.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Elisa Ridolfi ◽  
Cinzia Barone ◽  
Elio Scarpini ◽  
Daniela Galimberti

In the last few years, genetic and biomolecular mechanisms at the basis of Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD) have been unraveled. A key role is played by microglia, which represent the immune effector cells in the central nervous system (CNS). They are extremely sensitive to the environmental changes in the brain and are activated in response to several pathologic events within the CNS, including altered neuronal function, infection, injury, and inflammation. While short-term microglial activity has generally a neuroprotective role, chronic activation has been implicated in the pathogenesis of neurodegenerative disorders, including AD and FTLD. In this framework, the purpose of this review is to give an overview of clinical features, genetics, and novel discoveries on biomolecular pathogenic mechanisms at the basis of these two neurodegenerative diseases and to outline current evidence regarding the role played by activated microglia in their pathogenesis.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shengli Yang ◽  
Xiaojing Liu ◽  
Ting Cheng ◽  
Yuanlong Luo ◽  
Qiong Li ◽  
...  

Aeolian sediments hold key information on aeolian history and past environmental changes. Aeolian desertification and extensive land degradation have seriously affected the eco-environment in the Gannan region on the eastern Tibetan Plateau. Understanding the history of aeolian activities can deepen our understanding of the impacts of climatic changes on aeolian activities in the future. This study uses a detailed chronology and multiple proxy analyses of a typical aeolian section in Maqu to reconstruct aeolian activities in the region during the Holocene. Our results showed that aeolian activities have occurred in the eastern Tibetan Plateau since the early Holocene. Magnetic susceptibility, grain size records, and paleosols formation indicated a trend of stepwise weakening in aeolian activities from the early Holocene to the present. The weakening of aeolian activities was divided into three stages: ∼10.0–8.0 ka BP, ∼8.0–4.0 ka BP, and ∼4.0 ka BP to the present. Paleosols were primarily formed after ∼8.0 ka BP, and episodically interrupted aeolian activities processes in the Gannan region. Aeolian activity may increase in the Gannan region as the climate gradually warms. Climatic changes and local hydrological conditions have jointly affected the history of aeolian activities in this region.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7579 ◽  
Author(s):  
Sosuke Fujita ◽  
Erina Kuranaga ◽  
Yu-ichiro Nakajima

Jellyfish have existed on the earth for around 600 million years and have evolved in response to environmental changes. Hydrozoan jellyfish, members of phylum Cnidaria, exist in multiple life stages, including planula larvae, vegetatively-propagating polyps, and sexually-reproducing medusae. Although free-swimming medusae display complex morphology and exhibit increase in body size and regenerative ability, their underlying cellular mechanisms are poorly understood. Here, we investigate the roles of cell proliferation in body-size growth, appendage morphogenesis, and regeneration using Cladonema pacificum as a hydrozoan jellyfish model. By examining the distribution of S phase cells and mitotic cells, we revealed spatially distinct proliferating cell populations in medusae, uniform cell proliferation in the umbrella, and clustered cell proliferation in tentacles. Blocking cell proliferation by hydroxyurea caused inhibition of body size growth and defects in tentacle branching, nematocyte differentiation, and regeneration. Local cell proliferation in tentacle bulbs is observed in medusae of two other hydrozoan species, Cytaeis uchidae and Rathkea octopunctata, indicating that it may be a conserved feature among hydrozoan jellyfish. Altogether, our results suggest that hydrozoan medusae possess actively proliferating cells and provide experimental evidence regarding the role of cell proliferation in body-size control, tentacle morphogenesis, and regeneration.


Sign in / Sign up

Export Citation Format

Share Document