Swelling and structure of radiation induced near-surface damage in CR-39 and its chemical etching

2012 ◽  
Vol 47 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Mukhtar Ahmed Rana
Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3179
Author(s):  
Qi Wang ◽  
Kehong Zhou ◽  
Shuai Zhao ◽  
Wen Yang ◽  
Hongsheng Zhang ◽  
...  

Realizing the anisotropic deep trenching of GaN without surface damage is essential for the fabrication of GaN-based devices. However, traditional dry etching technologies introduce irreversible damage to GaN and degrade the performance of the device. In this paper, we demonstrate a damage-free, rapid metal-assisted chemical etching (MacEtch) method and perform an anisotropic, deep trenching of a GaN array. Regular GaN microarrays are fabricated based on the proposed method, in which CuSO4 and HF are adopted as etchants while ultraviolet light and Ni/Ag mask are applied to catalyze the etching process of GaN, reaching an etching rate of 100 nm/min. We comprehensively explore the etching mechanism by adopting three different patterns, comparing a Ni/Ag mask with a SiN mask, and adjusting the etchant proportion. Under the catalytic role of Ni/Ag, the GaN etching rate nearby the metal mask is much faster than that of other parts, which contributes to the formation of deep trenches. Furthermore, an optimized etchant is studied to restrain the disorder accumulation of excessive Cu particles and guarantee a continuous etching result. Notably, our work presents a novel low-cost MacEtch method to achieve GaN deep etching at room temperature, which may promote the evolution of GaN-based device fabrication.


1992 ◽  
Vol 262 ◽  
Author(s):  
J. L. Benton

ABSTRACTThe electrical and optical properties of defects introduced by Reactive Ion Etching (RIE) in the near surface region of Si after dry etching with various gases and plasma conditions is studied with spreading Resistance (SR), photoluminescence (PL), and capacitance-voltage profiling (C-V). Plasma etching in chlorine and fluorine based gases produce donors at the surface in both n-type and p-type, Czochralski and float-zone silicon. Isochronal annealing reveals the presence of two distinct regions of dopant compensation. The surface damage region is confined to 1000 Å and survives heat treatment at 400°C, while the defect reaction region extends ≥ 1 μm in depth and recovers by 250°C. A comprehensive picture of the interstitial defect reactions in RIE silicon is completed. The interstitial defects, Ci and Bi, created in the ion damaged near surface region, undergo recombination enhanced diffusion caused by the presence of ultraviolet light in the plasma, resulting in the long range diffusion into the Si bulk. Subsequently, the interstitial atoms are trapped by the background impurities forming the defect pairs, CiOi, CSCi, or BiOi, which are observed experimentally. The depth of the diffusion-limited trapping and the probability of forming specific pairs depends on the relative concentrations of the reactants, oxygen, carbon or boron, present in the bulk material.


Author(s):  
Vandana A. Salilkumar ◽  
Narayan K. Sundaram

The problem of a hard wedge sliding against a metal substrate has been studied extensively for its importance in tribo-plasticity and deformation processing. Here we explore the effect of introducing a single, near-surface plastic inhomogeneity (termed as a pseudograin) in a metal substrate using Lagrangian finite element (FE) analysis. The pseudograin is allowed to be softer or harder than the surrounding material. The effects of sliding parameters like the size and location of the pseudograin, friction and indenter geometry are also studied. Interestingly, the introduction of the pseudograin can lead to production of surface folds / self-contacts, and acutely-inclined, near-surface, crack-like features, which cannot be reproduced by homogeneous specimens. In fact, this tribosystem is phenomenologically very rich, despite differing from classical triboplastic systems of Challen, Oxley and Torrance only by way of the inhomogeneity. Despite its simplicity, the model replicates several experimentally observed features of surface folding, and is a minimal model to obtain folding in sliding. The occurrence of surface folds and concomitant residual surface damage points to the important role played by microstructure-related inhomogeneities in determining surface quality in deformation processing operations (e.g. repeated sliding to generate UFG surfaces) and is also a potentially new mode of sliding wear.


2001 ◽  
Vol 15 (28n29) ◽  
pp. 1419-1427
Author(s):  
KARUR R. PADMANABHAN

The possibility of carrying out in situ ion beam analysis of a gas-solid interface using RBS/Channeling techniques has been investigated using chemical and plasma etching of Si . A specially constructed thin Si window cell is used to initiate chemical etching of Si using Xe F 2. Analysis of etched Si surface using conventional, micro RBS/Channeling and computer simulated channeling spectra indicates a smooth damage free surface with fairly uniform etching. A moderate increase in etching rate and channeling χ min is observed in the presence of the analyzing beam. The results of chemical etching are compared with that due to Ar + and Xe + plasma induced etching of Si . In situ microbeam channeling analysis with CCM (Channeling Contrast Microscopy) of the plasma-etched surface indicates distinct differences in both etching rate and damage profile of Si (100) surface. The etching rate enhancement and damage profile have been explained using conventional TRIM analysis and ion beam surface damage.


1998 ◽  
Vol 37 (Part 1, No. 4A) ◽  
pp. 2043-2050 ◽  
Author(s):  
Miyako Matsui ◽  
Fumihiko Uchida ◽  
Kiyomi Katsuyama ◽  
Takafumi Tokunaga ◽  
Masayuki Kojima

1992 ◽  
Vol 262 ◽  
Author(s):  
Yoichi Kamiura ◽  
Fumio Hashimoto ◽  
Minoru Yoneta

ABSTRACTWc have found that chemical etching induced an electron trap E3 (0.15) into n-typc Si. We attribute this trap to a hydrogen-carbon complex on the basis of available experimental data. By measuring DLTS depth profiles of the E3 trap, we propose a model of the formation mechanism of the hydrogen-carbon complex as follows. Hydrogen atoms arc adsorbed on the Si surface to terminate Si dangling bonds during chemical etching, and after the etching some unstably adsorbed ones diffuse into the near-surface region of silicon and are trapped by carbon to form the complex. The E3 trap is stable up to 100δC in the dark but is annihilated by the illumination of band gap light around 250K only outside the depletion layer of the Schottky structure. This provides unambiguous experimental evidence for the recombination-enhanced dissociation, in which the electronic energy released by the electron-hole recombination at the E3 level is converted into local kinetic energy of hydrogen to be released from carbon.


1993 ◽  
Vol 316 ◽  
Author(s):  
S. Iyer ◽  
R. Parakkat ◽  
B. Patnaik ◽  
N. Parikh ◽  
S. Hegde

ABSTRACTIon implantation technique is being investigated as an alternate technique for doping GaSb. Hence an understanding of the production and removal of the damage is essential. In this paper, we report on the damages produced by implantation of Te, Er, Hg and Pb ions into undoped (100) GaSb single crystals and their recovery by Rutherford backscattering (RBS)/channeling. The implantations of 1013 to 1013 ions/cm2 in GaSb were done at liquid nitrogen temperature at energies corresponding to the same projected range of 447Å. A comparison of the damage produced by the different ions and their recovery was made by RBS/channeling along <100> axis of GaSb. Near surface damage equivalent to that of an amorphous layer was observed even at lower doses. Upon annealing at 600°C for 30 sec., the Te implanted samples showed best recovery compared to others (Xmin = 11%), the value of Xmin being better than those normally observed in unimplanted Te-doped substrates.


1986 ◽  
Vol 74 ◽  
Author(s):  
R. B. James ◽  
P. R. Bolton ◽  
R. A. Alvarez ◽  
R. E. Valiga ◽  
W. H. Christie

AbstractWe have measured the microwave-induced damage to the near-surface region of silicon for 1.9-μs pulses at a frequency of 2.856 GHz and a pulse power of up to 7.2 MW. Rectangular samples were irradiated in a test section of WR-284 waveguide that was filled with freon to a pressure of 30 psig. Incident, transmitted and reflected powers were monitored with directional couplers and fast diodes. The results of the time-resolved optical measurements show that the onset of surface damage is accompanied by a large increase in the reflected power. Examination of the irradiated surfaces shows that the degree of damage is greatest near the edges of the samples. Using secondary ion mass spectrometry to profile the implanted As, we find that the microwave pulses can melt the near-surface region of the material for pulse powers exceeding a threshold value.


Sign in / Sign up

Export Citation Format

Share Document