scholarly journals Ultrastructural changes in methicillin-resistant Staphylococcus aureus (MRSA) induced by a novel cyclic peptide ASP-1 from Bacillus subtilis: A scanning electron microscopy (SEM) study

Author(s):  
Rehan Deshmukh ◽  
Ajay Ghosh Chalasani ◽  
Debprasad Chattopadhyay ◽  
Utpal Roy
2020 ◽  
Vol 20 (24) ◽  
pp. 2186-2191
Author(s):  
Lialyz Soares Pereira André ◽  
Renata Freire Alves Pereira ◽  
Felipe Ramos Pinheiro ◽  
Aislan Cristina Rheder Fagundes Pascoal ◽  
Vitor Francisco Ferreira ◽  
...  

Background: Resistance to antimicrobial agents is a major public health problem, being Staphylococcus aureus prevalent in infections in hospital and community environments and, admittedly, related to biofilm formation in biotic and abiotic surfaces. Biofilms form a complex and structured community of microorganisms surrounded by an extracellular matrix adhering to each other and to a surface that gives them even more protection from and resistance against the action of antimicrobial agents, as well as against host defenses. Methods: Aiming to control and solve these problems, our study sought to evaluate the action of 1,2,3- triazoles against a Staphylococcus aureus isolate in planktonic and in the biofilm form, evaluating the activity of this triazole through Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) tests. We have also performed cytotoxic evaluation and Scanning Electron Microscopy (SEM) of the biofilms under the treatment of the compound. The 1,2,3-triazole DAN 49 showed bacteriostatic and bactericidal activity (MIC and MBC 128 μg/mL). In addition, its presence interfered with the biofilm formation stage (1/2 MIC, p <0.000001) and demonstrated an effect on young preformed biofilm (2 MICs, p <0.05). Results: Scanning Electron Microscopy images showed a reduction in the cell population and the appearance of deformations on the surface of some bacteria in the biofilm under treatment with the compound. Conclusion: Therefore, it was possible to conclude the promising anti-biofilm potential of 1,2,3-triazole, demonstrating the importance of the synthesis of new compounds with biological activity.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Heriyanto Tinentang ◽  
Henry F Aritonang ◽  
Harry S. J. Koleangan

Telah dilakukan penelitian tentang kemampuan aktivitas anti bakteri untuk bakteri Staphylococcus aureus (gram positif) dan Escherichia coli (gram negatif) dengan menggunakan nanokomposit nata de coco/TiO2, nata de coco/Ag, dan nata de coco/TiO2/Ag dengan variasi konsentrasi Ag 0,5 M; 0,6 M; 0,7 M; 0,8 M dan 0,9 M  menggunakan metode reduksi kimia. Nanopartikel tersebut dikarakterisasi menggunakan X-Ray Diffractometry (XRD), scanning electron microscopy-energy dispersive X-ray spectroscopy  (SEM-EDS) dan anti bakteri. Untuk uji aktivitas antibakteri menggunakan metode kertas cakram dan dilakukan sebanyak dua kali ulangan untuk tiap-tiap sampel dan bakteri yang diuji. Hasil penelitian menunjukan, aktivitas anti bakteri nanokomposit yang paling baik dalam menghambat pertumbuhan bakteri adalah nanokomposit Nata de coco/TiO2/Ag mampu menghambat pertumbuhan bakteri Escherichiacoli dan Staphylococcusaureus, namun nanokomposit tersebut lebih efektif menghambat pertumbuhan bakteri Escherichiacoli.ABSRACT Research on the ability of anti-bacterial activity for Staphylococcus aureus (gram positive) and Escherichia coli (gram negative) bacteria using nata de coco / nanocomposites TiO2, nata de coco / Ag, and nata de coco / TiO2 / Ag with variations of Ag 0,5 M; 0.6 M; 0.7 M; 0.8 M and 0.9 M using the chemical reduction method. Nanoparticles were characterized using X-Ray Diffractometry (XRD), scanning electron microscopy-energy dispersive X-ray spctroscopy  (SEM-EDS) and anti-bacterial actvity. Test the antibacterial activity using the paper disc method and repeated two times for each sample and bacteria tested. The results showed that the good anti-bacterial activity of nanocomposites in inhibiting bacterial growth was nanocomposite nata de coco /TiO2/Ag  able to inhibit the growth of Escherichia coli and S. aureus, but the nanocomposite is more effective in inhibiting the growth of Escherichia  coli bacteria.


2012 ◽  
Vol 535-537 ◽  
pp. 992-995
Author(s):  
Kun Mediaswanti ◽  
Vi Khanh Truong ◽  
Jafar Hasan ◽  
Elena P. Ivanova ◽  
Francois Malherbe ◽  
...  

Titanium and titanium alloys have been widely employed in many load-bearing orthopaedic applications due to their excellent strength and corrosion resistance. However, postimplantation infections might occur even though considerable studies have been made. Choosing a bio-friendly alloying element is one way to reduce infection risk. The aim of this study is to evaluate the extent of bacterial attachment on titanium, tantalum, niobium and tin surfaces. Two pathogenic bacterial strains, namely Staphylococcus aureus CIP 65.8T and Pseudomonas aeruginosa ATCC 9027, were used in this study. Quantification of bacterial attachment was performed using scanning electron microscopy. Results indicated that the surface chemistry and topography of the investigated materials significantly influence the degree of P. aeruginosa and S. aureus adhesion; however, surface wettability did not show a significant impact upon bacterial retention. In this study, tin was shown to be the most attractive material for bacteria adhesion but tantalum limits the bacterial adhesion. Therefore, it is suggested to limit the amount of tin as an titanium alloying element due to its nature to attract P. aeruginosa and S. aureus adhesion.


2016 ◽  
Vol 12 (3) ◽  
pp. 419-423 ◽  
Author(s):  
Amala Rajoo ◽  
Sreenivasan Sasidharan ◽  
Subramanion L Jothy ◽  
Surash Ramanathan ◽  
Sharif M Mansor

Purpose: To evaluate the antimicrobial activity of the methanol extract of Elaeis guineensis leaf against Staphylococcus aureus and to determine the effect of extract treatment on the microstructure of the microbeMethods: The antimicrobial activity of the methanol leaf extract of the plant against S. aureus was examined using disc diffusion and broth dilution methods. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were carried out to determine the major alterations in the microstructure of S. aureus after treatment with the extract.Results: The extract showed a good antimicrobial activity against S. aureus with a minimum inhibition concentration (MIC) of 6.25 mg/mL and for Chloramphenicol was 30.00 ìg/mL. The main changes observed under SEM and TEM were structural disorganization of the cell membrane which occurred after 12 h and total collapse of the cell 36 h after exposure to the extract.Conclusion: We concluded that the methanolic extract of E. guineensis leaf exhibited good antimicrobial activity against S. aureus and this is supported by SEM and TEM.Keywords: Antimicrobial activity, Elaeis guineensis, Staphylococcus aureus, Scanning electron microscopy, Transmission electron microscopy


2019 ◽  
Vol 366 (15) ◽  
Author(s):  
Jichun Wang ◽  
Junrui Wang ◽  
Yanyan Wang ◽  
Peng Sun ◽  
Xiaohui Zou ◽  
...  

ABSTRACT Imipenem is a beta-lactam antibiotic mainly active against gram-negative bacterial pathogens and also could cause cell wall impairment in methicillin-resistant Staphylococcus aureus(MRSA). However, related antibacterial mechanisms of imipenem on MRSA and mixed infections of MRSA and gram-negative bacteria are relatively poorly revealed. This study was to identify proteins in the MRSA response to subminimal inhibitory concentrations (sub-MICs) of imipenem treatment. Our results showed that 240 and 58 different expression proteins (DEPs) in sub-MICs imipenem-treated S3 (a standard MRSA strain) and S23 (a clinical MRSA strain) strains were identified through the isobaric tag for relative and absolute quantitation method when compared with untreated S3 and S23 strains, respectively, which was further confirmed by multiple reactions monitoring. Our result also demonstrated that expressions of multiple DEPs involved in cellular proliferation, metabolism and virulence were significantly changed in S3 and S23 strains, which was proved by gene ontology annotations and qPCR analysis. Further, transmission electron microscopy and scanning electron microscopy analysis showed cell wall deficiency, cell lysis and abnormal nuclear mitosis on S23 strain. Our study provides important information for understanding the antibacterial mechanisms of imipenem on MRSA and for better usage of imipenem on patients co-infected with MRSA and other multidrug-resistant gram-negative bacteria.


1995 ◽  
Vol 26 (4) ◽  
pp. 425-438 ◽  
Author(s):  
Rudolf Meier

AbstractThe eggs of 21 species in 12 genera of Sepsidae were studied using scanning electron microscopy. All but the eggs of Ortalischema have respiratory filaments which aid in gas exchange. Judged by positional differences and the lack of a central canal, the two filaments of Orygma are not homologous to the single filament of most remaining sepsids. Hinton's hypothesis that egg filaments are plesiomorphic for the Sepsidae is therefore rejected. Three egg characters are added to an existing data set comprising 58 taxa and 85 larval and adult characters. The egg characters allow the unambiguous placement of Lasionemopoda, for which the larval and adult data set had suggested two different positions on equally parsimonious trees. Based on the position of Lasionemopoda, the evolution of the fore femora of the Sepsidae is briefly discussed. The egg morphology of the Sepsidae is also compared to the morphology of drosophiline eggs which also have egg filaments.


Sign in / Sign up

Export Citation Format

Share Document