Characterization of pellets from mixing olive pomace and olive tree pruning

2016 ◽  
Vol 88 ◽  
pp. 185-191 ◽  
Author(s):  
M. Barbanera ◽  
E. Lascaro ◽  
V. Stanzione ◽  
A. Esposito ◽  
R. Altieri ◽  
...  
Keyword(s):  
Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1299
Author(s):  
Pablo Doménech ◽  
Aleta Duque ◽  
Isabel Higueras ◽  
José Luis Fernández ◽  
Paloma Manzanares

Olive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses. Several analytical methods were applied in order to fully characterize this fraction to varying extents: a mass closure of >80% was reached for EOP, >76% for OTP, >65% for OS, and >52% for OL. Among the compounds detected, xylooligosaccharides, mannitol, 3,4-dihydroxyphenylglycol, and hydroxytyrosol were noted as potential enhancers of the valorization of said by-products. The extraction of these compounds is expected to be more favorable for OTP, OL, and EOP, given their high extractives content, and is compatible with other utilization strategies such as the bioconversion of the lignocellulosic fraction into biofuels and bioproducts.


2013 ◽  
Vol 58 ◽  
pp. 344-354 ◽  
Author(s):  
Monica Calero ◽  
Antonio Pérez ◽  
Gabriel Blázquez ◽  
Alicia Ronda ◽  
Maria Angeles Martín-Lara

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4083
Author(s):  
Andrea Acampora ◽  
Vincenzo Civitarese ◽  
Giulio Sperandio ◽  
Negar Rezaei

Biomass occupies a very important place among renewable energy sources, and the residual biomass recovery chain represents a sector of fundamental importance. Our work focused on the production of pellets by pruning residues from two of the most important woody crops in Italy: hazelnut and olive groves. We found a higher value of bulk density for the hazelnut pellet (581.30 kg m−3 vs. 562.38 kg m−3) and a higher value of length for the olive pellet (16.66 mm vs. 10.47 mm). The percentages of durability were very similar (98%). The low heating value and ash content of hazelnut and olive were 17.21 MJ kg−1 and 3.1%, and 16.83 MJ kg−1 and 2.5%. A higher concentration of Cu, Pb, and Ni was observed in the hazelnut. The contrary was observed for the concentration of Zn. N content was 0.77% and 1.24% for the hazelnut and the olive, respectively. The concentration of S was 0.00% for both. The quality parameters that do not meet current standards could be improved by mixing these materials with different types of wood.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3052
Author(s):  
Diego Cardoza ◽  
Inmaculada Romero ◽  
Teresa Martínez ◽  
Encarnación Ruiz ◽  
Francisco J. Gallego ◽  
...  

A biorefinery integrated process based on lignocellulosic feedstock is especially interesting in rural areas with a high density of agricultural and agro-industrial wastes, which is the case for olive crop areas and their associated industries. In the region of Andalusia, in the south of Spain, the provinces of Jaén, Córdoba and Seville accumulate more than 70% of the olive wastes generated in Spain. Therefore, the valorisation of these wastes is a matter of interest from both an environmental and a social point of view. The olive biorefinery involves a multi-product process from different raw materials: olive leaves, exhausted olive pomace, olive stones and olive tree pruning residues. Biorefinery processes associated with these wastes would allow their valorisation to produce bioenergy and high value-added renewable products. In this work, using geographic information system tools, the biomass from olive crop fields, mills and olive pomace-extracting industries, where these wastes are generated, was determined and quantified in the study area. In addition, the vulnerability of the territory was evaluated through an environmental and territorial analysis that allowed for the determination of the reception capacity of the study area. Then, information layers corresponding to the availability of the four biomass wastes, and layers corresponding to the environmental fragility of the study area were overlapped and they resulted in an overall map. This made it possible to identify the best areas for the implementation of the biorefineries based on olive-derived biomass. Finally, as an example, three zones were selected for this purpose. These locations corresponded to low fragility areas with a high availability of biomass (more than 300,000 tons/year) in a 30 km radius, which would ensure the biomass supply.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1304
Author(s):  
Francisco Espínola ◽  
Alfonso M. Vidal ◽  
Juan M. Espínola ◽  
Manuel Moya

Wild olive trees have important potential, but, to date, the oil from wild olives has not been studied significantly, especially from an analytical point of view. In Spain, the wild olive tree is called “Acebuche” and its fruit “Acebuchina”. The objective of this work is to optimize the olive oil production process from the Acebuchina cultivar and characterize the oil, which could be marketed as healthy and functional food. A Box–Behnken experimental design with five central points was used, along with the Response Surface Methodology to obtain a mathematical experimental model. The oils from the Acebuchina cultivar meet the requirements for human consumption and have a good balance of fatty acids. In addition, the oils are rich in antioxidants and volatile compounds. The highest extraction yield, 12.0 g oil/100 g paste, was obtained at 90.0 min and the highest yield of phenolic compounds, 870.0 mg/kg, was achieved at 40.0 °C, and 90.0 min; but the maximum content of volatile compounds, 26.9 mg/kg, was obtained at 20 °C and 30.0 min. The oil yield is lower than that of commercial cultivars, but the contents of volatile and phenolic compounds is higher.


2021 ◽  
Vol 11 (14) ◽  
pp. 6445
Author(s):  
David Ibarra ◽  
Raquel Martín-Sampedro ◽  
Bernd Wicklein ◽  
Úrsula Fillat ◽  
María E. Eugenio

Motivated by the negative impact of fossil fuel consumption on the environment, the need arises to produce materials and energy from renewable sources. Cellulose, the main biopolymer on Earth, plays a key role in this context, serving as a platform for the development of biofuels, chemicals and novel materials. Among the latter, micro- and nanocellulose have been receiving increasing attention in the last few years. Their many attractive properties, i.e., thermal stability, high mechanical resistance, barrier properties, lightweight, optical transparency and ease of chemical modification, allow their use in a wide range of applications, such as paper or polymer reinforcement, packaging, construction, membranes, bioplastics, bioengineering, optics and electronics. In view of the increasing demand for traditional wood pulp (e.g., obtained from eucalypt, birch, pine, spruce) for micro/nanocellulose production, dedicated crops and agricultural residues can be interesting as raw materials for this purpose. This work aims at achieving microfibrillated cellulose production from fast-growing poplar and olive tree pruning using physical pretreatment (PFI refining) before the microfibrillation stage. Both raw materials yielded microfibrillated cellulose with similar properties to that obtained from a commercial industrial eucalypt pulp, producing films with high mechanical properties and low wettability. According to these properties, different applications for cellulose microfibers suspensions and films are discussed.


2017 ◽  
Vol 105 ◽  
pp. 238-251 ◽  
Author(s):  
José I. Santos ◽  
Úrsula Fillat ◽  
Raquel Martín-Sampedro ◽  
María E. Eugenio ◽  
María J. Negro ◽  
...  

2015 ◽  
Vol 72 (5) ◽  
pp. 711-720 ◽  
Author(s):  
G. Blázquez ◽  
A. Ronda ◽  
M. A. Martín-Lara ◽  
A. Pérez ◽  
M. Calero

Batch isotherm studies were carried out on a laboratory scale: (i) to investigate the effectiveness to remove lead of two wastes (olive stone (OS) and olive tree pruning (OTP)), untreated and chemically treated; and (ii) to examine the applicability of various adsorption isotherms to fit the experimental data. Results from tests were analyzed using seven equilibrium isotherm correlations (Langmuir, Freundlich, Dubinin–Radushkevich, Temkin, Redlich–Peterson, Sips, and Toth equations). The sum of the squares of the errors was determined for each isotherm and the Langmuir equation provided the best fit. Chemical treatments increased the biosorption properties of these materials. The maximum biosorption capacities were: 6.33, 49.13, 14.83, and 38.93 mg g−1 for untreated OS, HNO3-OS, H2SO4-OS, and NaOH-OS, respectively, and 26.72, 86.40, 72.78, and 123.80 mg g−1 for untreated OTP, HNO3-OTP, H2SO4-OTP, and NaOH-OTP, respectively. Finally, the loss of mass for each waste (13.9, 14.3, and 36.8% for HNO3-OS, H2SO4-OS, and NaOH-OS and 35.1, 27.5, and 46.7% for HNO3-OTP, H2SO4-OTP, and NaOH-OTP, respectively) was taken into account and an effectiveness coefficient was determined for each adsorbent material.


2021 ◽  
pp. 1-13
Author(s):  
Imen Landolsi ◽  
Narjes Rjiba ◽  
Mohamed Hamdaoui ◽  
Omar Anis Harzallah ◽  
Chedly Boudokhane

2019 ◽  
Vol 7 (1) ◽  
pp. 102830 ◽  
Author(s):  
Arminda Mamaní ◽  
María Fabiana Sardella ◽  
Marianela Giménez ◽  
Cristina Deiana

Sign in / Sign up

Export Citation Format

Share Document