scholarly journals Qualitative Characterization of the Pellet Obtained from Hazelnut and Olive Tree Pruning

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4083
Author(s):  
Andrea Acampora ◽  
Vincenzo Civitarese ◽  
Giulio Sperandio ◽  
Negar Rezaei

Biomass occupies a very important place among renewable energy sources, and the residual biomass recovery chain represents a sector of fundamental importance. Our work focused on the production of pellets by pruning residues from two of the most important woody crops in Italy: hazelnut and olive groves. We found a higher value of bulk density for the hazelnut pellet (581.30 kg m−3 vs. 562.38 kg m−3) and a higher value of length for the olive pellet (16.66 mm vs. 10.47 mm). The percentages of durability were very similar (98%). The low heating value and ash content of hazelnut and olive were 17.21 MJ kg−1 and 3.1%, and 16.83 MJ kg−1 and 2.5%. A higher concentration of Cu, Pb, and Ni was observed in the hazelnut. The contrary was observed for the concentration of Zn. N content was 0.77% and 1.24% for the hazelnut and the olive, respectively. The concentration of S was 0.00% for both. The quality parameters that do not meet current standards could be improved by mixing these materials with different types of wood.

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1299
Author(s):  
Pablo Doménech ◽  
Aleta Duque ◽  
Isabel Higueras ◽  
José Luis Fernández ◽  
Paloma Manzanares

Olive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses. Several analytical methods were applied in order to fully characterize this fraction to varying extents: a mass closure of >80% was reached for EOP, >76% for OTP, >65% for OS, and >52% for OL. Among the compounds detected, xylooligosaccharides, mannitol, 3,4-dihydroxyphenylglycol, and hydroxytyrosol were noted as potential enhancers of the valorization of said by-products. The extraction of these compounds is expected to be more favorable for OTP, OL, and EOP, given their high extractives content, and is compatible with other utilization strategies such as the bioconversion of the lignocellulosic fraction into biofuels and bioproducts.


2013 ◽  
Vol 58 ◽  
pp. 344-354 ◽  
Author(s):  
Monica Calero ◽  
Antonio Pérez ◽  
Gabriel Blázquez ◽  
Alicia Ronda ◽  
Maria Angeles Martín-Lara

2016 ◽  
Vol 88 ◽  
pp. 185-191 ◽  
Author(s):  
M. Barbanera ◽  
E. Lascaro ◽  
V. Stanzione ◽  
A. Esposito ◽  
R. Altieri ◽  
...  
Keyword(s):  

Author(s):  
J. A. Hurtado ◽  
L. F. Valdez ◽  
C. J. Escudero

Abstract This study shows the effectiveness of the wastewater treatment from a municipal slaughterhouse undergone to a previous biological treatment applying a sequence of stages, reaching a 75% of elimination of the COD using sedimentation in combination of coagulation-flocculation, using 0.5 g/L FeCl3 which is one of the best known inorganic coagulants. Then, the elimination of COD was around 98% adding the Fenton process where 1,000 mg/L H2O2 and FeSO4 are used. In addition to the COD, other water quality parameters were measured to evaluate the level of purification of the test samples, such as solids of different types, pH, DOC and so on. With the above, it can be noted that the Fenton process had a slight improvement in the effluent quality by using a solar concentrator in the now called photo-Fenton process, reaching around 99% of COD removal (0.36 g/L), 91% of total suspended solids (0.32 g/L) and 89% of DOC (0.20 g/L). These results were the best achieved within a proposed treatment train for this type of complex wastewater. Moreover, this last part of the process adds an improvement, by the usage of renewable energy sources such as sunlight.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1713 ◽  
Author(s):  
Alessandro Suardi ◽  
Francesco Latterini ◽  
Vincenzo Alfano ◽  
Nadia Palmieri ◽  
Simone Bergonzoli ◽  
...  

Pruning residues from olive groves represent an important biomass source. Until now, the management of pruning residue has generally represented a disposal problem rather than an opportunity for additional revenue. The main problem is the lack of a well-organized pruning biomass supply chain. In particular, harvesting is a key stage that influences the product quality, the type of logistics chain, and the economic sustainability of the pruning supply chain. The aim of the present paper was the evaluation of the machine performance of the Facma Comby TR200 towed shredder. The harvesting tests took place in Agios Konstantinos, Fthiotida, Central Greece. Two different experimental fields were used for the evaluation of this harvesting system; these fields were characterized by different slopes to check the convenience of using such a towed shredder on both hilly slopes and flat terrains. Analysis was conducted focusing on both the work productivity and costs. Moreover, an evaluation of the obtained hog fuel quality was performed. The Facma Comby TR200 showed good work performances on both flat (2.60 tdm·h−1) and hilly (2.74 tdm·h−1) land, even if a consistent influence of the pruning biomass yield on the work performances was reported. The biomass quality could be consistently improved by modifying the pick-up systems to avoid the collection of inert materials (soil and rocks). In fact, the analysis showed a high ash content in the comminuted material (4% dry basis). Finally, the economic aspects of this study’s results were in line with those reported in the literature. The applied harvesting system showed a cost equal to 29.88 and 16.59 €·tfm−1 on flat and hilly land, respectively.


Author(s):  
J.B. Posthill ◽  
R.P. Burns ◽  
R.A. Rudder ◽  
Y.H. Lee ◽  
R.J. Markunas ◽  
...  

Because of diamond’s wide band gap, high thermal conductivity, high breakdown voltage and high radiation resistance, there is a growing interest in developing diamond-based devices for several new and demanding electronic applications. In developing this technology, there are several new challenges to be overcome. Much of our effort has been directed at developing a diamond deposition process that will permit controlled, epitaxial growth. Also, because of cost and size considerations, it is mandatory that a non-native substrate be developed for heteroepitaxial nucleation and growth of diamond thin films. To this end, we are currently investigating the use of Ni single crystals on which different types of epitaxial metals are grown by molecular beam epitaxy (MBE) for lattice matching to diamond as well as surface chemistry modification. This contribution reports briefly on our microscopic observations that are integral to these endeavors.


2020 ◽  
Vol 70 (12) ◽  
pp. 4594-4600

The purpose of this study was to characterize some types of biomass wastes resulted from different activities such as: agriculture, forestry and food industry using thermogravimetric and ICP-MS analyses. Also, it was optimized an ICP-MS method for the determination of As, Cd and Pb from biomass ash samples. The ICP-MS analysis revealed that the highest concentration of metals (As, Cd, Pb) was recorded in the wood waste ash sample, also the thermogravimetric analysis indicated that the highest amount of ash was obtained for the same sample (26.82%). The biomass wastes mentioned in this study are alternative recyclable materials, reusable as pellets and briquettes. Keywords: ash, biomass, ICP-MS, minor elements, TG


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3013
Author(s):  
Larissa Souza Passos ◽  
Éryka Costa Almeida ◽  
Claudio Martin Pereira de Pereira ◽  
Alessandro Alberto Casazza ◽  
Attilio Converti ◽  
...  

Cyanobacterial blooms and strains absorb carbon dioxide, drawing attention to its use as feed for animals and renewable energy sources. However, cyanobacteria can produce toxins and have a low heating value. Herein, we studied a cyanobacterial strain harvested during a bloom event and analyzed it to use as animal feed and a source of energy supply. The thermal properties and the contents of total nitrogen, protein, carbohydrate, fatty acids, lipid, and the presence of cyanotoxins were investigated in the Microcystis aeruginosa LTPNA 01 strain and in a bloom material. Microcystins (hepatotoxins) were not detected in this strain nor in the bloom material by liquid chromatography coupled to mass spectrometry. Thermogravimetric analysis showed that degradation reactions (devolatilization) initiated at around 180 °C, dropping from approximately 90% to 20% of the samples’ mass. Our work showed that despite presenting a low heating value, both biomass and non-toxic M. aeruginosa LTPNA 01 could be used as energy sources either by burning or producing biofuels. Both can be considered a protein and carbohydrate source similar to some microalgae species as well as biomass fuel. It could also be used as additive for animal feed; however, its safety and potential adverse health effects should be further investigated.


2021 ◽  
Vol 92 (1) ◽  
Author(s):  
Bruna B. Przybulinski ◽  
Rodrigo G. Garcia ◽  
Maria Fernanda de C. Burbarelli ◽  
Claudia M. Komiyama ◽  
Deivid Kelly Barbosa ◽  
...  
Keyword(s):  

Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 437-446 ◽  
Author(s):  
Lisa Girard ◽  
Michael Freeling

Abstract Insertions of Mutator transposons into maize genes can generate suppressible alleles. Mu suppression is when, in the absence of Mu activity, the phenotype of a mutant allele reverts to that of its progenitor. Here we present the characterization of five dominant Mu-suppressible alleles of the knox (knotted1-like homeobox) genes liguleless3 and rough sheath1, which exhibit neomorphic phenotypes in the leaves. RNA blot analysis suggests that Mu suppression affects only the neomorphic aspect of the allele, not the wild-type aspect. Additionally, Mu suppression appears to be exerting its effects at the level of transcription or transcript accumulation. We show that truncated transcripts are produced by three alleles, implying a mechanism for Mu suppression of 5′ untranslated region insertion alleles distinct from that which has been described previously. Additionally, it is found that Mu suppression can be caused by at least three different types of Mutator elements. Evidence presented here suggests that whether an allele is suppressible or not may depend upon the site of insertion. We cite previous work on the knox gene kn1, and discuss our results in the context of interactions between Mu-encoded products and the inherently negative regulation of neomorphic liguleless3 and rough sheath1 transcription.


Sign in / Sign up

Export Citation Format

Share Document