Estimation, modeling, and prediction of land subsidence using Sentinel-1 time series in Tehran-Shahriar plain: A machine learning-based investigation

Author(s):  
Zeinab Azarakhsh ◽  
Mohsen Azadbakht ◽  
Aliakbar Matkan
2020 ◽  
Vol 12 (21) ◽  
pp. 3627
Author(s):  
Wahyu Hakim ◽  
Arief Achmad ◽  
Chang-Wook Lee

Areas at risk of land subsidence in Jakarta can be identified using a land subsidence susceptibility map. This study evaluates the quality of a susceptibility map made using functional (logistic regression and multilayer perceptron) and meta-ensemble (AdaBoost and LogitBoost) machine learning algorithms based on a land subsidence inventory map generated using the Sentinel-1 synthetic aperture radar (SAR) dataset from 2017 to 2020. The land subsidence locations were assessed using the time-series interferometry synthetic aperture radar (InSAR) method based on the Stanford Method for Persistent Scatterers (StaMPS) algorithm. The mean vertical deformation maps from ascending and descending tracks were compared and showed a good correlation between displacement patterns. Persistent scatterer points with mean vertical deformation value were randomly divided into two datasets: 50% for training the susceptibility model and 50% for validating the model in terms of accuracy and reliability. Additionally, 14 land subsidence conditioning factors correlated with subsidence occurrence were used to generate land subsidence susceptibility maps from the four algorithms. The receiver operating characteristic (ROC) curve analysis showed that the AdaBoost algorithm has higher subsidence susceptibility prediction accuracy (81.1%) than the multilayer perceptron (80%), logistic regression (79.4%), and LogitBoost (79.1%) algorithms. The land subsidence susceptibility map can be used to mitigate disasters caused by land subsidence in Jakarta, and our method can be applied to other study areas.


2020 ◽  
Vol 17 (3) ◽  
pp. 1
Author(s):  
Angkana Pumpuang ◽  
Anuphao Aobpaet

The land deformation in line of sight (LOS) direction can be measured using time series InSAR. InSAR can successfully measure land subsidence based on LOS in many big cities, including the eastern and western regions of Bangkok which is separated by Chao Phraya River. There are differences in prosperity between both sides due to human activities, land use, and land cover. This study focuses on the land subsidence difference between the western and eastern regions of Bangkok and the most possible cause affecting the land subsidence rates. The Radarsat-2 single look complex (SLC) was used to set up the time series data for long term monitoring. To generate interferograms, StaMPS for Time Series InSAR processing was applied by using the PSI algorithm in DORIS software. It was found that the subsidence was more to the eastern regions of Bangkok where the vertical displacements were +0.461 millimetres and -0.919 millimetres on the western and the eastern side respectively. The districts of Nong Chok, Lat Krabang, and Khlong Samwa have the most extensive farming area in eastern Bangkok. Besides, there were also three major industrial estates located in eastern Bangkok like Lat Krabang, Anya Thani and Bang Chan Industrial Estate. By the assumption of water demand, there were forty-eight wells and three wells found in the eastern and western part respectively. The number of groundwater wells shows that eastern Bangkok has the demand for water over the west, and the pumping of groundwater is a significant factor that causes land subsidence in the area.Keywords: Subsidence, InSAR, Radarsat-2, Bangkok


2020 ◽  
Author(s):  
Pathikkumar Patel ◽  
Bhargav Lad ◽  
Jinan Fiaidhi

During the last few years, RNN models have been extensively used and they have proven to be better for sequence and text data. RNNs have achieved state-of-the-art performance levels in several applications such as text classification, sequence to sequence modelling and time series forecasting. In this article we will review different Machine Learning and Deep Learning based approaches for text data and look at the results obtained from these methods. This work also explores the use of transfer learning in NLP and how it affects the performance of models on a specific application of sentiment analysis.


2020 ◽  
Author(s):  
Hsiao-Ko Chang ◽  
Hui-Chih Wang ◽  
Chih-Fen Huang ◽  
Feipei Lai

BACKGROUND In most of Taiwan’s medical institutions, congestion is a serious problem for emergency departments. Due to a lack of beds, patients spend more time in emergency retention zones, which make it difficult to detect cardiac arrest (CA). OBJECTIVE We seek to develop a Drug Early Warning System Model (DEWSM), it included drug injections and vital signs as this research important features. We use it to predict cardiac arrest in emergency departments via drug classification and medical expert suggestion. METHODS We propose this new model for detecting cardiac arrest via drug classification and by using a sliding window; we apply learning-based algorithms to time-series data for a DEWSM. By treating drug features as a dynamic time-series factor for cardiopulmonary resuscitation (CPR) patients, we increase sensitivity, reduce false alarm rates and mortality, and increase the model’s accuracy. To evaluate the proposed model, we use the area under the receiver operating characteristic curve (AUROC). RESULTS Four important findings are as follows: (1) We identify the most important drug predictors: bits (intravenous therapy), and replenishers and regulators of water and electrolytes (fluid and electrolyte supplement). The best AUROC of bits is 85%, it means the medical expert suggest the drug features: bits, it will affect the vital signs, and then the evaluate this model correctly classified patients with CPR reach 85%; that of replenishers and regulators of water and electrolytes is 86%. These two features are the most influential of the drug features in the task. (2) We verify feature selection, in which accounting for drugs improve the accuracy: In Task 1, the best AUROC of vital signs is 77%, and that of all features is 86%. In Task 2, the best AUROC of all features is 85%, which demonstrates that thus accounting for the drugs significantly affects prediction. (3) We use a better model: For traditional machine learning, this study adds a new AI technology: the long short-term memory (LSTM) model with the best time-series accuracy, comparable to the traditional random forest (RF) model; the two AUROC measures are 85%. It can be seen that the use of new AI technology will achieve better results, currently comparable to the accuracy of traditional common RF, and the LSTM model can be adjusted in the future to obtain better results. (4) We determine whether the event can be predicted beforehand: The best classifier is still an RF model, in which the observational starting time is 4 hours before the CPR event. Although the accuracy is impaired, the predictive accuracy still reaches 70%. Therefore, we believe that CPR events can be predicted four hours before the event. CONCLUSIONS This paper uses a sliding window to account for dynamic time-series data consisting of the patient’s vital signs and drug injections. The National Early Warning Score (NEWS) only focuses on the score of vital signs, and does not include factors related to drug injections. In this study, the experimental results of adding the drug injections are better than only vital signs. In a comparison with NEWS, we improve predictive accuracy via feature selection, which includes drugs as features. In addition, we use traditional machine learning methods and deep learning (using LSTM method as the main processing time series data) as the basis for comparison of this research. The proposed DEWSM, which offers 4-hour predictions, is better than the NEWS in the literature. This also confirms that the doctor’s heuristic rules are consistent with the results found by machine learning algorithms.


Author(s):  
Md. Mehedi Hasan Shawon ◽  
Sumaiya Akter ◽  
Md. Kamrul Islam ◽  
Sabbir Ahmed ◽  
Md. Mosaddequr Rahman

2020 ◽  
pp. 1-12
Author(s):  
Linuo Wang

Injuries and hidden dangers in training have a greater impact on athletes ’careers. In particular, the brain function that controls the motor function area has a greater impact on the athlete ’s competitive ability. Based on this, it is necessary to adopt scientific methods to recognize brain functions. In this paper, we study the structure of motor brain-computer and improve it based on traditional methods. Moreover, supported by machine learning and SVM technology, this study uses a DSP filter to convert the preprocessed EEG signal X into a time series, and adjusts the distance between the time series to classify the data. In order to solve the inconsistency of DSP algorithms, a multi-layer joint learning framework based on logistic regression model is proposed, and a brain-machine interface system of sports based on machine learning and SVM is constructed. In addition, this study designed a control experiment to improve the performance of the method proposed by this study. The research results show that the method in this paper has a certain practical effect and can be applied to sports.


Sign in / Sign up

Export Citation Format

Share Document