Porcine reproductive and respiratory syndrome virus (PRRSV) non-structural protein (NSP)1 transcriptionally inhibits CCN1 and CCN2 expression by blocking ERK-AP-1 axis in pig macrophages in vitro

2020 ◽  
Vol 132 ◽  
pp. 462-465
Author(s):  
In-Byung Park ◽  
Taehoon Chun
2013 ◽  
Vol 94 (9) ◽  
pp. 1972-1983 ◽  
Author(s):  
Yanhua Li ◽  
Longchao Zhu ◽  
Steven R. Lawson ◽  
Ying Fang

Non-structural protein 1β (nsp1β) of porcine reproductive and respiratory syndrome virus (PRRSV) contains a papain-like cysteine protease (PLPβ) domain and has been identified as the main viral protein antagonizing the host innate immune response. In this study, nsp1β was determined to suppress the expression of reporter genes as well as to suppress ‘self-expression’ in transfected cells, and this activity appeared to be associated with its interferon (IFN) antagonist function. To knock down the effect of nsp1β on IFN activity, a panel of site-specific mutations in nsp1β was analysed. Double mutations K130A/R134A (type 1 PRRSV) or K124A/R128A (type 2 PRRSV) targeting a highly conserved motif of nsp1β, GKYLQRRLQ (in bold), impaired the ability of nsp1β to suppress IFN-β and reporter gene expression, as well as to suppress ‘self-expression’ in vitro. Subsequently, viable recombinant viruses vSD01-08-K130A/R134A and vSD95-21-K124A/R128A, containing double mutations in the GKYLQRRLQ motif were generated using reverse genetics. In comparison with WT viruses, these nsp1β mutants showed impaired growth ability in infected cells, but the PLPβ cleavage function was not directly affected. The expression of selected innate immune genes was determined in vSD95-21-K124A/R128A mutant-infected cells. The results consistently showed that gene expression levels of IFN-α, IFN-β and IFN-stimulated gene 15 were upregulated in cells that were infected with the vSD95-21-K124A/R128A compared with that of WT virus. These data suggest that PRRSV nsp1β may selectively suppress cellular gene expression, including expression of genes involved in the host innate immune function. Modifying the key residues in the highly conserved GKYLQRRLQ motif could attenuate virus growth and improve the cellular innate immune responses.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Hongfang Ma ◽  
Rui Li ◽  
Longguang Jiang ◽  
Songlin Qiao ◽  
Xin-xin Chen ◽  
...  

AbstractPorcine reproductive and respiratory syndrome (PRRS) is a serious disease burdening global swine industry. Infection by its etiological agent, PRRS virus (PRRSV), shows a highly restricted tropism of host cells and has been demonstrated to be mediated by an essential scavenger receptor (SR) CD163. CD163 fifth SR cysteine-rich domain (SRCR5) is further proven to play a crucial role during viral infection. Despite intense research, the involvement of CD163 SRCR5 in PRRSV infection remains to be elucidated. In the current study, we prepared recombinant monkey CD163 (moCD163) SRCR5 and human CD163-like homolog (hCD163L1) SRCR8, and determined their crystal structures. After comparison with the previously reported crystal structure of porcine CD163 (pCD163) SRCR5, these structures showed almost identical structural folds but significantly different surface electrostatic potentials. Based on these differences, we carried out mutational research to identify that the charged residue at position 534 in association with the one at position 561 were important for PRRSV-2 infection in vitro. Altogether the current work sheds some light on CD163-mediated PRRSV-2 infection and deepens our understanding of the viral pathogenesis, which will provide clues for prevention and control of PRRS.


2001 ◽  
Vol 183 (4) ◽  
pp. 1423-1433 ◽  
Author(s):  
Susan R. Heimer ◽  
Harry L. T. Mobley

ABSTRACT Proteus mirabilis, a gram-negative bacterium associated with complicated urinary tract infections, produces a metalloenzyme urease which hydrolyzes urea to ammonia and carbon dioxide. The apourease is comprised of three structural subunits, UreA, UreB, and UreC, assembled as a homotrimer of individual UreABC heterotrimers (UreABC)3. To become catalytically active, apourease acquires divalent nickel ions through a poorly understood process involving four accessory proteins, UreD, UreE, UreF, and UreG. While homologues of UreD, UreF, and UreG have been copurified with apourease, it remains unclear specifically how these polypeptides associate with the apourease or each other. To identify interactions among P. mirabilis accessory proteins, in vitro immunoprecipitation and in vivo yeast two-hybrid assays were employed. A complex containing accessory protein UreD and structural protein UreC was isolated by immunoprecipitation and characterized with immunoblots. This association occurs independently of coaccessory proteins UreE, UreF, and UreG and structural protein UreA. In a yeast two-hybrid screen, UreD was found to directly interact in vivo with coaccessory protein UreF. Unique homomultimeric interactions of UreD and UreF were also detected in vivo. To substantiate the study of urease proteins with a yeast two-hybrid assay, previously described UreE dimers and homomultimeric UreA interactions among apourease trimers were confirmed in vivo. Similarly, a known structural interaction involving UreA and UreC was also verified. This report suggests that in vivo, P. mirabilis UreD may be important for recruitment of UreF to the apourease and that crucial homomultimeric associations occur among these accessory proteins.


2009 ◽  
Vol 83 (18) ◽  
pp. 9449-9463 ◽  
Author(s):  
Jun Han ◽  
Mark S. Rutherford ◽  
Kay S. Faaberg

ABSTRACT The N terminus of the replicase nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) contains a putative cysteine protease domain (PL2). Previously, we demonstrated that deletion of either the PL2 core domain (amino acids [aa] 47 to 180) or the immediate downstream region (aa 181 to 323) is lethal to the virus. In this study, the PL2 domain was found to encode an active enzyme that mediates efficient processing of nsp2-3 in CHO cells. The PL2 protease possessed both trans- and cis-cleavage activities, which were distinguished by individual point mutations in the protease domain. The minimal size required to maintain these two enzymatic activities included nsp2 aa 47 to 240 (Tyr47 to Cys240) and aa 47 to 323 (Tyr47 to Leu323), respectively. Introduction of targeted amino acid mutations in the protease domain confirmed the importance of the putative Cys55- His124 catalytic motif for nsp2/3 proteolysis in vitro, as were three additional conserved cysteine residues (Cys111, Cys142, and Cys147). The conserved aspartic acids (e.g., Asp89) were essential for the PL2 protease trans-cleavage activity. Reverse genetics revealed that the PL2 trans-cleavage activity played an important role in the PRRSV replication cycle in that mutations that impaired the PL2 protease trans function, but not the cis activity, were detrimental to viral viability. Lastly, the potential nsp2/3 cleavage site was probed. Mutations with the largest impact on in vitro cleavage were at or near the G1196|G1197 dipeptide.


2001 ◽  
Vol 114 (1) ◽  
pp. 37-47 ◽  
Author(s):  
G. Crevel ◽  
H. Huikeshoven ◽  
S. Cotterill

We originally isolated the Df31 protein from Drosophila embryo extracts as a factor which could decondense Xenopus sperm, by removing the sperm specific proteins and interacting with histones to facilitate their loading onto DNA. We now believe that this protein has a more general function in cellular DNA metabolism. The Df31 gene encodes a very hydrophilic protein with a predicted molecular mass of 18.5 kDa. Immunostaining showed that Df31 was present in a wide range of cell types throughout differentiation and in both dividing and non-dividing cells. In all cases the protein is present in large amounts, comparable with the level of nucleosomes. Injection of antisense oligonucleotides to lower the level of Df31 in embryos caused severe disruption of the nuclear structure. Large irregular clumps of DNA were formed, and in most cases the amount of DNA associated with each clump was more than that found in a normal nucleus. Immunofluorescence, cell fractionation, and formaldehyde cross-linking show that Df31 is associated with chromatin and that a significant fraction of it binds very tightly. It also shows the same binding characteristics when loaded onto chromatin in vitro. Chromatin fractionation shows that Df31 is tightly associated with nucleosomes, preferentially with oligonucleosomes. Despite this no differences were observed in the properties of nucleosomes loaded in the in vitro system in the presence and absence of Df31. These results suggest that Df31 has a role in chromosomal structure, most likely acting as a structural protein at levels of folding higher than that of nucleosomes.


2020 ◽  
Author(s):  
Min Wang ◽  
Fei Ye ◽  
Jiaqi Su ◽  
Jingru Zhao ◽  
Bin Yuan ◽  
...  

Abstract The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously designated as 2019-nCoV) outbreak has caused global concern1. Currently, there are no clinically approved specific drugs or vaccines available for this virus. The viral polymerase is a promising target for developing broad- spectrum antiviral drugs. Here, based on the highly similar structure of SARS- CoV non-structural protein 12 (nsp12) polymerase subunit2, we applied virtual screen for the available compounds, including both the FDA-approved and under- clinic drugs, to identify potential antiviral molecules against SARS-CoV-2. We found two drugs, the clinically approved anti-fungi drug Caspofungin Acetate (Cancidas) and the oncolytic peptide LTX-315, can bind SARS-CoV-2 nsp12 protein to block the polymerase activity in vitro. Further live virus assay revealed that both Caspofungin Acetate and LTX-315 can effectively inhibit SARS-CoV-2 replication in vero cells. These findings present promising drug candidates for treatment of related diseases and would also stimulate the development of pan- coronavirus antiviral agents.Authors Min Wang, Fei Ye, Jiaqi Su, Jingru Zhao, and Bin Yuan contributed equally to this work.


2005 ◽  
Vol 79 (21) ◽  
pp. 13463-13472 ◽  
Author(s):  
Danso Ako-Adjei ◽  
Marc C. Johnson ◽  
Volker M. Vogt

ABSTRACT The retroviral structural protein, Gag, is capable of independently assembling into virus-like particles (VLPs) in living cells and in vitro. Immature VLPs of human immunodeficiency virus type 1 (HIV-1) and of Rous sarcoma virus (RSV) are morphologically distinct when viewed by transmission electron microscopy (TEM). To better understand the nature of the Gag-Gag interactions leading to these distinctions, we constructed vectors encoding several RSV/HIV-1 chimeric Gag proteins for expression in either insect cells or vertebrate cells. We used TEM, confocal fluorescence microscopy, and a novel correlative scanning EM (SEM)-confocal microscopy technique to study the assembly properties of these proteins. Most chimeric proteins assembled into regular VLPs, with the capsid (CA) domain being the primary determinant of overall particle diameter and morphology. The presence of domains between matrix and CA also influenced particle morphology by increasing the spacing between the inner electron-dense ring and the VLP membrane. Fluorescently tagged versions of wild-type RSV, HIV-1, or murine leukemia virus Gag did not colocalize in cells. However, wild-type Gag proteins colocalized extensively with chimeric Gag proteins bearing the same CA domain, implying that Gag interactions are mediated by CA. A dramatic example of this phenomenon was provided by a nuclear export-deficient chimera of RSV Gag carrying the HIV-1 CA domain, which by itself localized to the nucleus but relocalized to the cytoplasm in the presence of wild type HIV-1 Gag. Wild-type and chimeric Gag proteins were capable of coassembly into a single VLP as viewed by correlative fluorescence SEM if, and only if, the CA domain was derived from the same virus. These results imply that the primary selectivity of Gag-Gag interactions is determined by the CA domain.


Development ◽  
1991 ◽  
Vol 111 (1) ◽  
pp. 181-190
Author(s):  
D.I. de Pomerai ◽  
W.K. Ip ◽  
M. McLaughlin ◽  
K.C. Perry

When chick embryo neutral retina (NR) cells are cultured for long periods in vitro, they undergo extensive transdifferentiation into lens and express the lens protein, delta crystallin. We now demonstrate that this process is accompanied by a change in the chromatin conformation of the delta-gene locus from DNAase1-resistant to DNAase1-sensitive in the nuclei of most cells. Transcripts hybridising to a delta probe are also much more prevalent among the in vitro transcription products from lens or transdifferentiated NR culture nuclei, as compared to nuclei from fresh NR tissue. Published evidence indicates that the chick delta 1 crystallin gene encodes the major structural protein of embryonic lens fibres, whereas the closely related delta 2 gene may encode the urea-cycle enzyme argininosuccinate lyase (ASL). Our present data lends further support to this view. Both immunodetectable delta-related protein(s) and ASL activity are present in fresh embryonic NR tissue, as well as in mouse and Rana liver, and in Rana lens. Our polyclonal anti-delta antibody also cross-reacts with a major constituent of commercial bovine ASL, of the same molecular size as chick delta crystallin. Immunoselection studies suggest that the ASL activity in chick embryonic NR is conferred mainly by the delta-related protein band. So-called ‘ectopic’ expression of delta crystallin in embryonic NR (and other tissues) may thus involve the delta 2/ASL gene, and could reflect some metabolic requirement for ASL activity.


Sign in / Sign up

Export Citation Format

Share Document