Vitex agnus-castus L. (Chasteberry) extracts shows in vitro and in vivo anti-inflammatory and anti-tumor propensities via reduction of cyclooxygenase-2 activity and oxidative stress complications

Author(s):  
Faten M. Ibrahim ◽  
Abeer Y. Ibrahim ◽  
Samah A. El-Newary ◽  
Saber F. Hendawy ◽  
Mohamad F. Mahomoodally
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mengdan Yu ◽  
Lijun Zhang ◽  
Shasha Sun ◽  
Zhenhua Zhang

Abstract Background Diabetic retinopathy (DR) is a common and potentially devastating microvascular complication of diabetes mellitus (DM). The main features of DR are inflammation and oxidative damage. Gliquidone (GLI) is confirmed to be a hypoglycemic drug by oral administration. The current study is aimed to investigate the role and mechanism of GLI on the pathogenesis of DR. Methods High glucose (HG)-induced human retinal endothelial cells (HRECs) were used to explore the anti-inflammatory and anti-oxidant effects of GLI on DR in vitro. Streptozotocin (STZ)-induced DM rats were used to investigate the effects of GLI on retinal structures, inflammation, and oxidative stress. The levels of SIRT1/Notch1 pathway-related proteins were determined by western blotting. Results GLI treatment promoted the viability and inhibited the apoptosis of HG-induced HRECs. Meanwhile, the levels of interleukin (IL)-6, IL-1β, tumour necrosis factor alpha and reactive oxygen species were suppressed, while both catalase and superoxide dismutase were elevated after GLI treatment in HG-induced HRECs. Furthermore, we found that Silencing information regulator 2 related enzyme 1 (SIRT1) silencing reversed the inhibiting effects of GLI on the levels of protein Notch1 and effector genes Hes1 and Hey2. Similar anti-inflammatory and anti-oxidant effects of GLI in STZ-induced DM rats were observed. Additionally, GLI administration also repressed vascular hyperpermeability in vivo. Conclusion GLI may be an effective agent to improve DR through repression of inflammation and oxidative stress via SIRT1/Notch1 pathway.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2210
Author(s):  
Maria Pompea Antonia Baldassarre ◽  
Pamela Di Tomo ◽  
Giorgia Centorame ◽  
Assunta Pandolfi ◽  
Natalia Di Pietro ◽  
...  

Myo-inositol (Myo) improves insulin resistance, glucose metabolism, and helps gestational diabetes (GDM) management. GDM is associated with a pro-inflammatory state and increased oxidative stress, which are both involved in vascular damage in diabetes. Our aim was to study Myo anti-inflammatory/antioxidant potential effects on an in vitro model of human umbilical vein endothelial cells (HUVECs). To this end, monocyte cell adhesion to HUVECs, adhesion molecule membrane exposure, and oxidative stress levels were determined in cells from control (C-) and GDM women treated during pregnancy either with diet only (GD-) or with diet plus Myo (GD+Myo). To deeply study the vascular effects of Myo, the same evaluations were performed in C- and GD-HUVECs following 48 h in vitro stimulation with Myo. Notably, we first observed that GD-HUVECs obtained from women assuming Myo supplementation exhibited a significantly decreased number of monocytes that adhered to endothelial cells, less adhesion molecule exposure, and lower intracellular reactive oxygen species (ROS) levels in the basal state as compared to GD-HUVECs obtained from women treated by diet only. This Myo anti-inflammatory/antioxidant effect was confirmed by 48 h in vitro stimulation of GD-HUVECs as compared to controls. Altogether, these results strongly suggest that Myo may exert protective actions against chronic inflammation induced by endothelial dysfunction in diabetes.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 507
Author(s):  
Rosaria Meccariello ◽  
Stefania D’Angelo

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.


2021 ◽  
Vol 96 ◽  
pp. 107593
Author(s):  
Yiming Ma ◽  
Lijuan Luo ◽  
Xiangming Liu ◽  
Herui Li ◽  
Zihang Zeng ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Andra-Diana Andreicut ◽  
Alina Elena Pârvu ◽  
Augustin Cătălin Mot ◽  
Marcel Pârvu ◽  
Eva Fischer Fodor ◽  
...  

Oxidative stress and inflammation are interlinked processes. The aim of the study was to perform a phytochemical analysis and to evaluate the antioxidant and anti-inflammatory activities of ethanolic Mahonia aquifolium flower (MF), green fruit (MGF), and ripe fruit (MRF) extracts. Plant extract chemical composition was evaluated by HLPC. A DPPH test was used for the in vitro antioxidant activity. The in vivo antioxidant effects and the anti-inflammatory potential were tested on a rat turpentine oil-induced inflammation, by measuring serum nitric oxide (NOx) and TNF-alpha, total oxidative status (TOS), total antioxidant reactivity (TAR), oxidative stress index (OSI), 3-nitrothyrosine (3NT), malondialdehyde (MDA), and total thiols (SH). Extracts were administrated orally in three dilutions (100%, 50%, and 25%) for seven days prior to inflammation. The effects were compared to diclofenac. The HPLC polyphenol and alkaloid analysis revealed chlorogenic acid as the most abundant compound. All extracts had a good in vitro antioxidant activity, decreased NOx, TOS, and 3NT, and increased SH. TNF-alpha was reduced, and TAR increased only by MF and MGF. MDA was not influenced. Our findings suggest that M. aquifolium has anti-inflammatory and antioxidant effects that support the use in primary prevention of the inflammatory processes.


2018 ◽  
Author(s):  
Ilias Marmouzi ◽  
El Mostafa Karym ◽  
Rachid Alami ◽  
Meryem El Jemli ◽  
Mourad Kharbach ◽  
...  

AbstractBackgroundTherapy combination is defined as disease treatment with two or more medication to acheive efficacy with lower doses or lower toxicity. Regarding its reported toxicities and efficacy, the Essential Oils (EOs) from Syzygium aromaticum (SA) and Pelargonium graveolens (PG) were combined for in vitro and in vivo assays and toxicities.MethodsThe Essential Oils and mixture were tested for in vivo/in vitro antioxidant and anti-inflammatory activities. The assays included the animal model of acute inflammation (carrageenan model), the protective effect on H2O2/Sodium nitroprissude induced stress in Tetrahymena pyriformis, and the in vitro antioxidant assays.ResultsThe chemical analysis of the investigated Oils has lead to the identification of Eugenol (74.06%), Caryophyllene (11.52%) and Carvacrol acetate (7.82%) as the major element in SA; while PG was much higher in Citronellol (30.77%), 10-epi-γ-Eudesmol (22.59%), and Geraniol (13.95%). In our pharmacological screening of samples, both Oils demonstrated good antioxidant effects. In vivo investigation of the antioxidant activity in the protozoa model (T. pyriformis) demonstrated a lesser toxic effect of EOs mixture with no significant differences when oxidative stress markers and antioxidant enzymes (MDA, SOD and CAT) were evaluated. On the other hand the in vivo model of inflammatory response to carrageenan demonstrated a good inhibitory potential of both EOs. The EOs Mixture demonstrated equivalent bioactivity with lower toxic effect and minimal risk for each compound.ConclusionsThe results from this study indicate that EOs mixture from SA and PG demonstrated promising modulatory antioxidant/anti-inflammatory effect, which suggest an efficient association for therapy.


2021 ◽  
Vol 22 (19) ◽  
pp. 10822
Author(s):  
Agata Winiarska ◽  
Monika Knysak ◽  
Katarzyna Nabrdalik ◽  
Janusz Gumprecht ◽  
Tomasz Stompór

The incidence of type 2 diabetes (T2D) has been increasing worldwide, and diabetic kidney disease (DKD) remains one of the leading long-term complications of T2D. Several lines of evidence indicate that glucose-lowering agents prevent the onset and progression of DKD in its early stages but are of limited efficacy in later stages of DKD. However, sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor (GLP-1R) antagonists were shown to exert nephroprotective effects in patients with established DKD, i.e., those who had a reduced glomerular filtration rate. These effects cannot be solely attributed to the improved metabolic control of diabetes. In our review, we attempted to discuss the interactions of both groups of agents with inflammation and oxidative stress—the key pathways contributing to organ damage in the course of diabetes. SGLT2i and GLP-1R antagonists attenuate inflammation and oxidative stress in experimental in vitro and in vivo models of DKD in several ways. In addition, we have described experiments showing the same protective mechanisms as found in DKD in non-diabetic kidney injury models as well as in some tissues and organs other than the kidney. The interaction between both drug groups, inflammation and oxidative stress appears to have a universal mechanism of organ protection in diabetes and other diseases.


2019 ◽  
Vol 317 (4) ◽  
pp. F881-F889 ◽  
Author(s):  
Hyung Jung Oh ◽  
Hyewon Oh ◽  
Bo Young Nam ◽  
Je Sung You ◽  
Dong-Ryeol Ryu ◽  
...  

As oxidative stress is one major factor behind contrast-associated acute kidney injury (CA-AKI), we investigated the protective effect of klotho against CA-AKI via the antioxidative effect. In in vitro experiments, cells (NRK-52E) were divided into the following three groups: control, iopamidol, or iopamidol + recombinant klotho (rKL) groups. Moreover, cell viability was measured with the Cell Counting Kit-8 assay, and oxidative stress was examined with 2',7'-dichlorodihydrofluorescein diacetate fluorescence intensity. RT-PCR and Western blot analysis were performed to assess propidium iodide klotho expression, and Bax-to-Bcl-2 and apoptosis ratios were evaluated with annexin V/Hoechst 33342 staining. Furthermore, we knocked down the klotho gene using siRNA to verify the endogenous effect of klotho. In our in vivo experiments, oxidative stress was evaluated with the thiobarbituric acid-reactive substance assay, and apoptosis was evaluated with the Bax-to-Bcl-2 ratio and cleaved caspase-3 immunohistochemistry. Additionally, cell and tissue morphology were investigated with transmission electron microscopy. In both in vitro and in vivo experiments, mRNA and protein expression of klotho significantly decreased in CA-AKI mice compared with control mice, whereas oxidative stress and apoptosis markers were significantly increased in CA-AKI mice. However, rKL supplementation mitigated the elevated apoptotic markers and oxidative stress in the CA-AKI mouse model and improved cell viability. In contrast, oxidative stress and apoptotic markers were more aggravated when the klotho gene was knocked down. Moreover, we found more cytoplasmic vacuoles in the CA-AKI mouse model using transmission electron microscopy but fewer cytoplasmic vacuoles in rKL-supplemented cells. The present study shows that klotho in proximal tubular cells can protect against CA-AKI via an antioxidative effect.


Sign in / Sign up

Export Citation Format

Share Document