Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria×ananassa)

2011 ◽  
Vol 130 (1) ◽  
pp. 133-140 ◽  
Author(s):  
Huseyin Karlidag ◽  
Ertan Yildirim ◽  
Metin Turan
1998 ◽  
Vol 46 (1) ◽  
pp. 135 ◽  
Author(s):  
Masako Mishio ◽  
Naoki Kachi

Stomatal conductance and leaf water potential at around noon, pre-dawn leaf water potential, pressure–volume parameters, and leaf structural characteristics including leaf thickness, leaf dry mass per unit area and turgid leaf water content per unit area were compared between a coastal shrub species, Eurya emarginata (Thunb.) Makino and an inland shrub species, E. japonica Thunb. The pre-dawn leaf water potential was only slightly lower in E. emarginata than in E. japonica, and the environmental conditions such as the photosynthetic photon flux density and the vapour pressure deficit did not differ obviously between the two habitats. No apparent differences were observed in the pressure–volume parameters between the two species. On the other hand, E. emarginata had much higher stomatal conductance and significantly thicker leaves with higher turgid leaf water content per unit area than E. japonica. The thicker leaf with higher water content on an area basis in E. emarginata maintains adequate leaf turgor pressure against a higher rate of transpiration.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 772A-772
Author(s):  
Ricardo Cesped-Ruiz* ◽  
Bingru Huang

The American cranberry often undergoes drought stress during the summer. However, the physiological response of this species to drought is not well understood. This study was designed to determine the effects of drought on two commercial cranberry cultivars of high potential yield, `Ben Lear' and `Stevens', during a vegetative stage. The plants were subjected to drought for 15 days in a greenhouse. Soil water content, leaf water content, leaf photosynthetic rate, stomatal conductance, transpiration, differential leaf-air temperature, photochemical efficiency (Fv'/Fm') and the actual PSII efficiency (deltaF/Fm') decreased in those plants subjected to drought. Drought reduced differential leaf-air temperature at day 6 of treatment and stomatal conductance and transpiration starting at day 9 and photosynthetic rate at day 13. Drought decreased leaf water content at day 14 and Fv'/Fm' and PSII efficiency at day 15. Our results indicated that cranberry plants in vegetative stage were sensitive to drought for both cultivars and stomatal conductance was the most sensitive parameter among those examined for both cultivars.


Author(s):  
Rahul Raj ◽  
Jeffrey P. Walker ◽  
Vishal Vinod ◽  
Rohit Pingale ◽  
Balaji Naik ◽  
...  

2021 ◽  
Vol 13 (13) ◽  
pp. 2634
Author(s):  
Qiyuan Wang ◽  
Yanling Zhao ◽  
Feifei Yang ◽  
Tao Liu ◽  
Wu Xiao ◽  
...  

Vegetation heat-stress assessment in the reclamation areas of coal gangue dumps is of great significance in controlling spontaneous combustion; through a temperature gradient experiment, we collected leaf spectra and water content data on alfalfa. We then obtained the optimal spectral features of appropriate leaf water content indicators through time series analysis, correlation analysis, and Lasso regression analysis. A spectral feature-based long short-term memory (SF-LSTM) model is proposed to estimate alfalfa’s heat stress level; the live fuel moisture content (LFMC) varies significantly with time and has high regularity. Correlation analysis of the raw spectrum, first-derivative spectrum, spectral reflectance indices, and leaf water content data shows that LFMC and spectral data were the most strongly correlated. Combined with Lasso regression analysis, the optimal spectral features were the first-derivative spectral value at 1661 nm (abbreviated as FDS (1661)), RVI (1525,1771), DVI (1412,740), and NDVI (1447,1803). When the classification strategies were divided into three categories and the time sequence length of the spectral features was set to five consecutive monitoring dates, the SF-LSTM model had the highest accuracy in estimating the heat stress level in alfalfa; the results provide an important theoretical basis and technical support for vegetation heat-stress assessment in coal gangue dump reclamation areas.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 280
Author(s):  
Diana Saja-Garbarz ◽  
Agnieszka Ostrowska ◽  
Katarzyna Kaczanowska ◽  
Franciszek Janowiak

The aim of this study was to investigate the accumulation of silicon in oilseed rape and to characterize the changes in chosen water balance parameters in response to drought. The following parameters were estimated: water content, osmotic and water potential, evapotranspiration, stomatal conductance and abscisic acid level under optimal and drought conditions. It was shown that oilseed rape plants accumulate silicon after its supplementation to the soil, both in the case of silicon alone and silicon together with iron. It was revealed that silicon (without iron) helps maintain constant water content under optimal conditions. While no silicon influence on osmotic regulation was observed, a transpiration decrease was detected under optimal conditions after silicon application. Under drought, a reduction in stomatal conductance was observed, but it was similar for all plants. The decrease in leaf water content under drought was accompanied by a significant increase in abscisic acid content in leaves of control plants and those treated with silicon together with iron. To sum up, under certain conditions, silicon is accumulated even in non-accumulator species, such as oilseed rape, and presumably improves water uptake under drought stress.


2013 ◽  
Vol 40 (4) ◽  
pp. 409 ◽  
Author(s):  
Harald Hackl ◽  
Bodo Mistele ◽  
Yuncai Hu ◽  
Urs Schmidhalter

Spectral measurements allow fast nondestructive assessment of plant traits under controlled greenhouse and close-to-field conditions. Field crop stands differ from pot-grown plants, which may affect the ability to assess stress-related traits by nondestructive high-throughput measurements. This study analysed the potential to detect salt stress-related traits of spring wheat (Triticum aestivum L.) cultivars grown in pots or in a close-to-field container platform. In two experiments, selected spectral indices assessed by active and passive spectral sensing were related to the fresh weight of the aboveground biomass, the water content of the aboveground biomass, the leaf water potential and the relative leaf water content of two cultivars with different salt tolerance. The traits were better ascertained by spectral sensing of container-grown plants compared with pot-grown plants. This may be due to a decreased match between the sensors’ footprint and the plant area of the pot-grown plants, which was further characterised by enhanced senescence of lower leaves. The reflectance ratio R760 : R670, the normalised difference vegetation index and the reflectance ratio R780 : R550 spectral indices were the best indices and were significantly related to the fresh weight, the water content of the aboveground biomass and the water potential of the youngest fully developed leaf. Passive sensors delivered similar relationships to active sensors. Across all treatments, both cultivars were successfully differentiated using either destructively or nondestructively assessed parameters. Although spectral sensors provide fast and qualitatively good assessments of the traits of salt-stressed plants, further research is required to describe the potential and limitations of spectral sensing.


2019 ◽  
Vol 104 ◽  
pp. 41-47 ◽  
Author(s):  
Wenpeng Lin ◽  
Yuan Li ◽  
Shiqiang Du ◽  
Yuanfan Zheng ◽  
Jun Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document