Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network

2016 ◽  
Vol 568 ◽  
pp. 1253-1262 ◽  
Author(s):  
Jun Liu ◽  
Yiqun Han ◽  
Xiao Tang ◽  
Jiang Zhu ◽  
Tong Zhu
Author(s):  
Han-Yin Sun ◽  
Ci-Wen Luo ◽  
Yun-Wei Chiang ◽  
Kun-Lin Yeh Yi-Ching Li ◽  
Yung-Chung Ho ◽  
...  

Primary open-angle glaucoma (POAG) is the most common type of glaucoma. However, little is known about POAG in adults and exposure to air pollution. The current study aims to investigate whether exposure to particulate matter with a mass median aerodynamic diameter of ≤2.5 μm (PM2.5) is associated with POAG diagnosis. Patient data were obtained from the Longitudinal Health Insurance Database 2010 (LHID2010) of Taiwan for the 2008–2013 period. PM2.5 concentration data, collected from the Ambient Air Quality Monitoring Network established by the Environmental Protection Administration of Taiwan, were categorized into four groups according to World Health Organization (WHO) exposure standards for PM2.5. We estimated the odds ratios (ORs) and 95% CIs for risk factors for POAG with logistic regression. The OR of per WHO standard level increase was 1.193 (95% CI 1.050–1.356). Compared with the normal level, the OR of WHO 2.0 level was 1.668 (95% CI 1.045–2.663, P < 0.05). After excluding confounding risk factors for POAG in this study, we determined that increased PM2.5 exposure is related to POAG risk (ORs > 1, P < 0.05). In this study, PM2.5 was an independent factor associated with open-angle glaucoma. Further research is required to better understand the mechanisms connecting PM2.5 and open-angle glaucoma.


Author(s):  
Yun-Wei Chiang ◽  
Sheng-Wen Wu ◽  
Ci-Wen Luo ◽  
Shih-Pin Chen ◽  
Chun-Jung Chen ◽  
...  

The global prevalence of diabetes mellitus (DM) has reached 20%. Air pollutants with a particle size of less than 2.5 μm (PM2.5) are a globally recognized risk factor for diabetes and glaucoma. We examined whether the risk of glaucoma would decrease or increase when patients with DM were exposed to different PM2.5 concentrations. Data were obtained from the National Health Insurance Research Database (NHIRD) of Taiwan and the Air Quality Monitoring Network between 2008 and 2013. This nested case–control study involved 197 DM patients with glaucoma and 788 DM patients without glaucoma. Cases and controls were matched (1:4) by gender, age (±5 years), and index date (±6 months), and their data were entered in a logistic regression model adjusted for gender, age, urbanization level, income level, and comorbidities. The odds ratio (OR) of glaucoma at PM2.5 exposure concentration in the fourth quartile (Q4) compared with in the first quartile (Q1) was 1.7 (95% CI: 1.084–2.764). For glaucoma risk, the OR was 1.013 (95% CI: 1.006–1.020) at a PM2.5 exposure concentration in Q1, 1.004 (95% CI: 1.001–1.007) in the third quartile (Q3), and 1.003 (95% CI: 1.001–1.004) in Q4. In the subgroup analysis of patients living in non-emerging towns and non-agricultural towns, the OR for glaucoma in Q4 compared with in Q1 was 2.1 (95% CI: 1.229–3.406) and 1.8 (95% CI: 1.091–2.803), respectively (p trend = 0.001 and 0.011). For patients without migraine, the OR for glaucoma was 1.7 (95% CI: 1.074–2.782; p = 0.006). These results demonstrate that, for patients with DM, PM2.5 increased the risk of glaucoma and PM2.5 was an independent risk factor for glaucoma in patients with DM.


2019 ◽  
Vol 41 (4) ◽  
pp. 85-102 ◽  
Author(s):  
A.V. Iatsyshyn ◽  
◽  
Yu. G. Kutsan ◽  
V.O. Artemchuk ◽  
I.P. Kameneva ◽  
...  

2017 ◽  
Author(s):  
Aram Abdulqadir ◽  
Mohammed Shukur
Keyword(s):  

Author(s):  
Sima Ajdar qizi Askerova

Monitoring of sea water condition is one of major requirements for carrying out the reliable ecological control of water environment. Monitoring networks contain such elements as sea buoys, beacons, etc. and are designated for measuringvarious hydrophysical parameters, including salinity of sea water. Development of specialized network and a separate buoy system for measuring thesea water salinity at different depths makes it possible to determine major regularities of processes of pollution and self-recovery of the sea waters. The article describes the scientific and methodological basics for development of this specialized network and questions of its optimal construction. It is well-known that at a depth of 30-45 m of the Caspian Sea salinity decreases and then at a depth of 45-60 m salinity is fully recovered. The mentioned changes of salinity at the relatively upper layer of sea waters is of special interest for studying the effect of ocean-going processes on the climate forming in the Caspian area. In terms of informativeness of measurements of surface waters salinity, the most informative is a layer ata 30-60 m depth, where inversion and recovery of salinity take place. It is shown that in most informative subrange of measurements, i. e. at a depth of 30-60 m optimization of regime of measurements complex should be carried out in order to increase the effectiveness of held researches. It is shown that at a depth of 35-50 m choice of the optimum regime of measurements makes it possible to obtain the maximum amount of information.


Author(s):  
Georgiana Grigoraș ◽  
Bogdan Urițescu

Abstract The aim of the study is to find the relationship between the land surface temperature and air temperature and to determine the hot spots in the urban area of Bucharest, the capital of Romania. The analysis was based on images from both moderate-resolution imaging spectroradiometer (MODIS), located on both Terra and Aqua platforms, as well as on data recorded by the four automatic weather stations existing in the endowment of The National Air Quality Monitoring Network, from the summer of 2017. Correlation coefficients between land surface temperature and air temperature were higher at night (0.8-0.87) and slightly lower during the day (0.71-0.77). After the validation of satellite data with in-situ temperature measurements, the hot spots in the metropolitan area of Bucharest were identified using Getis-Ord spatial statistics analysis. It has been achieved that the “very hot” areas are grouped in the center of the city and along the main traffic streets and dense residential areas. During the day the "very hot spots” represent 33.2% of the city's surface, and during the night 31.6%. The area where the mentioned spots persist, falls into the "very hot spot" category both day and night, it represents 27.1% of the city’s surface and it is mainly represented by the city center.


Sign in / Sign up

Export Citation Format

Share Document