Detection of terrigenous and marine organic matter flow into a eutrophic semi-enclosed bay by δ13C and δ15N of intertidal macrobenthos and basal food sources

2018 ◽  
Vol 613-614 ◽  
pp. 847-860 ◽  
Author(s):  
Iman Arbi ◽  
Songlin Liu ◽  
Jingping Zhang ◽  
Yunchao Wu ◽  
Xiaoping Huang
2011 ◽  
Vol 62 (2) ◽  
pp. 119 ◽  
Author(s):  
Adam Hartland ◽  
Graham D. Fenwick ◽  
Sarah J. Bury

Little is known about the feeding modes of groundwater invertebrates (stygofauna). Incorporation of sewage-derived organic matter (OM) into a shallow groundwater food web was studied using fluorescence and stable isotope signatures (δ13C and δ15N). Organic pollution was hypothesised to limit sensitive species’ abundances along the contamination gradient and isotope signatures of stygofauna consuming sewage-derived OM were expected to be enriched in δ15N. Stygofauna communities near a sewage treatment plant in New Zealand were sampled over 4 months and microbial biofilms were incubated in situ on native gravel for 1 month. As anticipated, OM stress-subsidy gradients altered stygofauna composition: the biomass of oligochaetes and Paraleptamphopus amphipods increased in OM-enriched groundwater (higher dissolved organic carbon (DOC) and tryptophan-like fluorescence), whereas other, probably less-tolerant taxa (e.g. ostracods, Dytiscidae) were absent. Isotopic signatures for stygofauna from polluted groundwater were consistent with assimilation of isotopically enriched sewage-N (δ15N values of 7–16‰), but highly depleted in δ13C relative to sewage. Negative 13C discriminations probably occur in Paraleptamphopus amphipods, and may also occur in oligochaetes and Dytiscidae, a finding with implications for the application of δ13C for determining food sources in groundwaters. Organic pollution of groundwaters may have serious repercussions for stygofauna community structure with potentially irreversible consequences.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5460 ◽  
Author(s):  
Fleur C. Van Duyl ◽  
Benjamin Mueller ◽  
Erik H. Meesters

Sponges are ubiquitous on coral reefs, mostly long lived and therefore adaptive to changing environmental conditions. They feed on organic matter withdrawn from the passing water and they may harbor microorganisms (endosymbionts), which contribute to their nutrition. Their diets and stable isotope (SI) fractionation determine the SI signature of the sponge holobiont. Little is known of spatio–temporal variations in SI signatures of δ13C and δ15N in tropical sponges and whether they reflect variations in the environment. We investigated the SI signatures of seven common sponge species with different functional traits and their potential food sources between 15 and 32 m depth along the S-SE and E-NE side of the Saba Bank, Eastern Caribbean, in October 2011 and October 2013. SI signatures differed significantly between most sponge species, both in mean values and in variation, indicating different food preferences and/or fractionation, inferring sponge species-specific isotopic niche spaces. In 2011, all sponge species at the S-SE side were enriched in d13C compared to the E-NE side. In 2013, SI signatures of sponges did not differ between the two sides and were overall lighter in δ13C and δ15N than in 2011. Observed spatio–temporal changes in SI in sponges could not be attributed to changes in the SI signatures of their potential food sources, which remained stable with different SI signatures of pelagic (particulate organic matter (POM): δ13C −24.9‰, δ15N +4.3‰) and benthic-derived food (macroalgae: δ13C −15.4‰, δ15N +0.8‰). Enriched δ13C signatures in sponges at the S-SE side in 2011 are proposed to be attributed to predominantly feeding on benthic-derived C. This interpretation was supported by significant differences in water mass constituents between sides in October 2011. Elevated NO3 and dissolved organic matter concentrations point toward a stronger reef signal in reef overlying water at the S-SE than N-NE side of the Bank in 2011. The depletions of δ13C and δ15N in sponges in October 2013 compared to October 2011 concurred with significantly elevated POM concentrations. The contemporaneous decrease in δ15N suggests that sponges obtain their N mostly from benthic-derived food with a lower δ15N than pelagic food. Average proportional feeding on available sources varied between sponge species and ranged from 20% to 50% for benthic and 50% to 80% for pelagic-derived food, assuming trophic enrichment factors of 0.5‰ ± sd 0.5 for δ13C and 3‰ ± sd 0.5 for δ15N for sponges. We suggest that observed variation of SI in sponges between sides and years were the result of shifts in the proportion of ingested benthic- and pelagic-derived organic matter driven by environmental changes. We show that sponge SI signatures reflect environmental variability in space and time on the Saba Bank and that SI of sponges irrespective of their species-specific traits move in a similar direction in response to these environmental changes.


2021 ◽  
Vol 9 (5) ◽  
pp. 541
Author(s):  
Jiacheng Li ◽  
Fajin Chen ◽  
Shuwen Zhang ◽  
Chao Huang ◽  
Chunqing Chen ◽  
...  

In this study, the isotopic composition (δ13C and δ15N), total organic carbon content, total nitrogen content, and C/N ratios of suspended particulate organic matter (POM) in Zhanjiang Bay, which is a semi-enclosed bay with concentrated artificial activities in Southern China, were analyzed in order to investigate the seasonal variations in the principal POM sources in the monsoon region. In summer, the δ13C and δ15N values showed a weak correlation with the chlorophyll a (Chl a), suggesting that terrigenous sources were dominant. However, in winter, the particulate organic carbon and particulate nitrogen values were correlated with the Chl a in the middle bay and bay mouth. Moreover, the δ13C values showed a significant correlation with Chl a during the winter, indicating that the contribution of the in situ phytoplankton was relatively important and was affected by the monsoon in winter. Compared with the corresponding δ13C values, the δ15N values exhibited a complex spatial distribution. By using a Bayesian mixing model, in the upper bay, the source of POM was mainly from marine organic matter (49%) in summer, and almost an equilibrated contribution of all sources in winter. In the middle bay and bay mouth, the POM contribution mainly originated from marine organic matter (53%) during the winter. In contrast, the POM source was mainly soil organic matter (63%) in summer, suggesting that the POM was sourced from the runoff from the upstream basin. Our results suggest that the seasonal shifts of the source of POM should be taken into account when estimating C or N mass balance in the monsoon-controlled bay.


2014 ◽  
Vol 11 (12) ◽  
pp. 18145-18188
Author(s):  
R. M. Jeffreys ◽  
E. H. Fisher ◽  
A. J. Gooday ◽  
K. E. Larkin ◽  
G. A. Wolff ◽  
...  

Abstract. The Arabian Sea is a region of elevated productivity with the highest globally recorded fluxes of particulate organic matter (POM) to the deep ocean, providing an abundant food source for fauna at the seafloor. However, benthic communities are also strongly influenced by an intense oxygen minimum zone (OMZ), which impinges on the continental slope at bathyal depths. We compared the trophic ecology of foraminifera on the Oman and Pakistan margins of the Arabian Sea (140–3185 m water depth). Organic carbon concentrations of surficial sediments were higher on the Oman margin (3.32 ± 1.4%) compared to the Pakistan margin (2.45 ± 1.1%) and sedimentary organic matter (SOM) quality estimated from the Hydrogen Index was also higher on the Oman margin (300–400 mg HC (mg TOC)−1) compared to the Pakistan margin (<250 mg HC (mg TOC)−1). δ13C and δ15N values of sediments were similar on both margins (−20 and 8‰, respectively). Stable isotope analysis (SIA) showed that foraminiferal cells had a wide range of δ13C values (−25.5 to −11.5‰), implying that they utilise multiple food sources; indeed δ13C values varied between depths, foraminiferal types and between the two margins. Foraminifera had broad ranges in δ15N values (−7.8 to 27.3‰). The enriched values suggest that some species may store nitrate to utilise in respiration; this was most notable on the Pakistan margin. Depleted foraminiferal δ15N values were identified on both margins, particularly the Oman margin, and may reflect feeding on chemosynthetic bacteria. We suggest that differences in productivity regimes between the two margins may be responsible for the differences observed in foraminiferal isotopic composition. In addition, at the time of sampling, whole jellyfish carcasses (Crambionella orsini) and a carpet of jelly detritus were observed across the Oman margin transect. Associated chemosynthetic bacteria may have provided an organic-rich food source for foraminifera at these sites. Our data suggest that foraminifera in OMZ settings can utilise a variety of food sources and metabolic pathways to meet their energetic demands.


Author(s):  
Pascal Riera ◽  
Lucas Stal ◽  
Joop Nieuwenhuize

The trophic interactions between primary consumers and the organic matter sources in a man-made intertidal ecosystem were investigated. The most representative invertebrates that occupied the different habitat types tend to use similar food sources, namely benthic diatoms and suspended particulate or sedimentary organic matter, although they do so in different proportions. Fucus vesiculosus was abundant on the rocky substrate but this macroalga nor its epiphytes contributed importantly to the diet of the primary consumers inhabiting these assemblages. In contrast, benthic diatoms from the nearby mudflat were directly used as a food source because of their re-suspension in the water and transport by the tide to the artificial rocky shore. The results suggested that the trophic pathways in this intertidal environment were relatively simple.


2020 ◽  
Vol 644 ◽  
pp. 91-103
Author(s):  
D Bearham ◽  
MA Vanderklift ◽  
RA Downie ◽  
DP Thomson ◽  
LA Clementson

Benthic suspension feeders, such as bivalves, potentially have several different food sources, including plankton and resuspended detritus of benthic origin. We hypothesised that suspension feeders are likely to feed on detritus if it is present. This inference would be further strengthened if there was a correlation between δ13C of suspension feeder tissue and δ13C of particulate organic matter (POM). Since detritus is characterised by high particulate organic matter (POC):chl a ratios, we would also predict a positive correlation between POM δ13C and POC:chl a. We hypothesised that increasing depth and greater distance from shore would produce a greater nutritional reliance by experimentally transplanted blue mussels Mytilus edulis on plankton rather than macrophyte-derived detritus. After deployments of 3 mo duration in 2 different years at depths from 3 to 40 m, M. edulis sizes were positively correlated with POM concentrations. POC:chl a ratios and δ13C of POM and M. edulis gill tissue decreased with increasing depth (and greater distance from shore). δ13C of POM was correlated with δ13C of M. edulis. Our results suggest that detritus comprised a large proportion of POM at shallow depths (<15 m), that M. edulis ingested and assimilated carbon in proportion to its availability in POM, and that growth of M. edulis was higher where detritus was present and POM concentrations were higher.


2002 ◽  
Vol 59 (10) ◽  
pp. 1606-1615 ◽  
Author(s):  
Martin Kainz ◽  
Marc Lucotte ◽  
Christopher C Parrish

Pathways of methyl mercury (MeHg) accumulation in zooplankton include ingestion of organic matter (OM). We analyzed fatty acid (FA) biomarkers in zooplankton to (i) investigate the effect of allochthonous and autochthonous OM ingestion on MeHg concentrations ([MeHg]) in zooplankton and (ii) examine how algal and bacterial food sources affect MeHg bioaccumulation. We partitioned bulk zooplankton samples (i.e., >500, 202, 100, and 53 μm) from Lake Lusignan (Québec) and measured [MeHg] and [FA] in each fraction. [MeHg] increased with increasing body size and was significantly higher in pelagic than in littoral macrozooplankton (>500 μm). The amount of the ingested terrestrial FA biomarker 24:0 indicated that less than 1% of the total FA in zooplankton was derived from allochthonous sources. More than 60% of the ingested FA originated from algal biomarkers and <10% from bacterial biomarkers. Relative amounts of algal-derived essential FA and bacterial FA were not associated with [MeHg] in any size fraction. In pelagic zones, the amount of MeHg in zooplankton related positively to the number of large organisms such as Calanoid copepods and Daphnia. We propose that the accumulation of MeHg in lacustrine zooplankton depends on the zooplankton habitat rather than on the quality of ingested food.


Sign in / Sign up

Export Citation Format

Share Document