Isolation of dissolved organic matter in effluents from sewage treatment plant and evaluation of the influences on its DBPs formation

2008 ◽  
Vol 64 (1) ◽  
pp. 31-37 ◽  
Author(s):  
H ZHANG ◽  
J QU ◽  
H LIU ◽  
X ZHAO
2009 ◽  
Vol 149 (1-3) ◽  
pp. 311-318 ◽  
Author(s):  
Roberto Rosal ◽  
Antonio Rodríguez ◽  
José Antonio Perdigón-Melón ◽  
Alice Petre ◽  
Eloy García-Calvo

1990 ◽  
Vol 22 (1-2) ◽  
pp. 251-259 ◽  
Author(s):  
R. Pujol

The sewage treatment plant of Metabief (East of France) has been monitored during three weeks in winter 1988. The treatment associates a physico-chemical treatment with a biological process of biofiltration. The first step eliminates about 60 % of the organic matter (COD and BOD). The biofliters improve the treatment removing 60 % of COD influent and 65 % of TSS. The process is efficient (N excepted) under conditions of the experiment but nitrification is limited by cold temperatures (< 10°C). Important results related to biological sludge product are presented (sludge characteristic, microscopic data, sludge production). Power consumption of biofliters represents 70 % of the total plant needs. Adequate control of washing cycles and close survey of numerous movable devices are of the utmost importance to guarantee the proper operating of biofliters.


2011 ◽  
Vol 62 (2) ◽  
pp. 119 ◽  
Author(s):  
Adam Hartland ◽  
Graham D. Fenwick ◽  
Sarah J. Bury

Little is known about the feeding modes of groundwater invertebrates (stygofauna). Incorporation of sewage-derived organic matter (OM) into a shallow groundwater food web was studied using fluorescence and stable isotope signatures (δ13C and δ15N). Organic pollution was hypothesised to limit sensitive species’ abundances along the contamination gradient and isotope signatures of stygofauna consuming sewage-derived OM were expected to be enriched in δ15N. Stygofauna communities near a sewage treatment plant in New Zealand were sampled over 4 months and microbial biofilms were incubated in situ on native gravel for 1 month. As anticipated, OM stress-subsidy gradients altered stygofauna composition: the biomass of oligochaetes and Paraleptamphopus amphipods increased in OM-enriched groundwater (higher dissolved organic carbon (DOC) and tryptophan-like fluorescence), whereas other, probably less-tolerant taxa (e.g. ostracods, Dytiscidae) were absent. Isotopic signatures for stygofauna from polluted groundwater were consistent with assimilation of isotopically enriched sewage-N (δ15N values of 7–16‰), but highly depleted in δ13C relative to sewage. Negative 13C discriminations probably occur in Paraleptamphopus amphipods, and may also occur in oligochaetes and Dytiscidae, a finding with implications for the application of δ13C for determining food sources in groundwaters. Organic pollution of groundwaters may have serious repercussions for stygofauna community structure with potentially irreversible consequences.


2014 ◽  
Vol 700 ◽  
pp. 447-450
Author(s):  
Yun Qian ◽  
Tao Wu ◽  
Meng Fan Zhang

pH parameter is one of the main factors influencing organic degradation in the sewage treatment, and the degradation of organic matter in biochemical treatment unit is the largest, the hydrolysis acidification processing unit is the second largest. When the water pH range of biochemical treatment unit is [6.8 7.2], organic degradation is in the largest degree. The pH range of neutralization unit must be based on a subsequent hydrolysis acidification treatment unit, in order to adjust the pH range dynamically. Finally we make wastewater treated by biochemical unit meet the pH standard, and make the organic matter degrade in the largest degree. We designed chemical wastewater pH intelligent control device based on MSP430F149 MCU. The application of this device shows that the method has high control accuracy, less drug consumption and has large organic matter degradation in the sewage treatment plant, etc.


1991 ◽  
Vol 24 (10) ◽  
pp. 327-328
Author(s):  
Ingemar Karlsson

Chemical treatment of sewage water is today often considered as a method for phosphorus reduction and used in combination with biological treatment. The experience in Scandinavia, however, shows that chemical treatment alone gives beside a good phosphorus removal also a high BOD reduction. Due to the very low investment cost for such a process it has been adapted in Scandinavia as an alternative to biological treatment. Where the demand is for greater sewage treatment the most feasible method is to complement the chemical precipitation process with a compact biological treatment. In Sweden the dominating post (and also the simultaneous) precipitation process has in many plants been replaced by a chemical pre-treatment process, because with pre-precipitation most of the organic matter is coagulated and extracted already in the primary clarifier. The energy demand in the biological process will decrease. The organic matter in the sludge will increase, which in an anaerobic digester means more digester gas. The unloading pre-precipitation effect can also give advantages for nitrification. The important BOD/TKN ratio is decreased. It is possible to build up a high sludge age and to upgrade a plant without tank expansion to a nitrifying plant. Pre-precipitation is normally not influencing the readily degradable BOD, which is about 25% of the total BOD and therefore a perfect electron donor for pre-denitri-fication is still available. The pre-precipitated sludge contains 75% of the organic matter in the sewage and can by hydrolysis be converted to readily degradable organic matter, which presents a valuable carbon source for the denitrification process. The hydrolysation process can be performed by, for instance, anaerobic treatment or heat treatment. This paper will review experiences from full-scale applications as well as pilot plant and laboratory studies.


2015 ◽  
Vol 35 (6) ◽  
pp. 998-1008 ◽  
Author(s):  
Pablo F. S. Alves ◽  
Silvânio R. Santos ◽  
Marcos K. Kondo ◽  
Rodinei F. Pegoraro ◽  
Edcássio D. Araújo

ABSTRACT The feasibility of using sewage wastewater as a water and nutrient source for plants is an alternative to harness agricultural natural resource, observing its influence on the organic matter dynamics and soil energy. Our objective here was to evaluate the effects of applying different doses of effluent from a sewage treatment plant, in Janaúba – MG, Brazil, over the physical attributes of a soil grown with “Prata Anã” banana. From soil sample collection at depths of 0-20, 20-40, and 40-60 cm, we determined the following soil properties: soil density, total porosity, macroporosity, microporosity, organic matter, clay dispersed in water and stability of soil aggregate. The experimental design was in randomized blocks with four repetitions. Wastewater raising doses promoted increase in suspended solids, contributing to macroporosity reduction at 20-40 and 40-60 cm depths; as well as a reduction in organic matter within 0-20 cm layer. Clay dispersal was observed in the depths of 0-20 cm, being derived from an increase in sodium content. Concurrently, there was a reduction of soil aggregate stability.


Sign in / Sign up

Export Citation Format

Share Document