Impact of operating conditions on permeate flux and process economics for cross flow ceramic membrane ultrafiltration of surface water

2012 ◽  
Vol 87 ◽  
pp. 47-53 ◽  
Author(s):  
Katie Guerra ◽  
John Pellegrino ◽  
Jörg E. Drewes
1995 ◽  
Vol 60 (12) ◽  
pp. 2074-2084
Author(s):  
Petr Mikulášek

The microfiltration of a model fluid on an α-alumina microfiltration tubular membrane in the presence of a fluidized bed has been examined. Following the description of the basic characteristic of alumina tubular membranes, model dispersion and spherical particles used, some comments on the experimental system and experimental results for different microfiltration systems are presented. From the analysis of experimental results it may be concluded that the use of turbulence-promoting agents resulted in a significant increase of permeate flux through the membrane. It was found out that the optimum porosity of fluidized bed for which the maximum values of permeate flux were reached is approximately 0.8.


Author(s):  
Laslo Šereš ◽  
Ljubica Dokić ◽  
Bojana Ikonić ◽  
Dragana Šoronja-Simović ◽  
Miljana Djordjević ◽  
...  

Cross-flow microfiltration using ceramic tubular membrane was applied for treatment of steepwater from corn starch industry. Experiments are conducted according to the faced centered central composite design at three different transmembrane pressures (1, 2 and 3 bar) and cross-flow velocities (100, 150 and 200 L/h) with and without the usage of Kenics static mixer. For examination of the influence of the selected operating conditions at which usage of the static mixer is justified, a response surface methodology and desirability function approach were used. Obtained results showed improvement in the average permeate flux by using Kenics static mixer for 211 % to 269 % depending on experimental conditions when compared to the system without the static mixer. As a result of optimization, the best results considering flux improvement as well as reduction of specific energy consumption were obtained at low transmembrane pressure and lower feed cross-flow rates.


Membranes ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 67 ◽  
Author(s):  
Wirginia Tomczak ◽  
Marek Gryta

This paper reports the study of the cross-flow microfiltration (MF) of glycerol fermentation broths with Citrobacter freundii bacteria. A single channel tubular ceramic membrane with a nominal pore size of 0.14 µm was used. It has been demonstrated that the MF ceramic membrane has been successfully applied to bacteria cell removal and to effectively eliminate colloidal particles from glycerol fermentation broths. However, due to fouling, the significant reduction of the MF performance has been demonstrated. In order to investigate the impact of transmembrane pressure (TMP) and feed flow rate (Q) on MF performance, 24 experiments have been performed. The highest steady state permeate flux (138.97 dm3/m2h) was achieved for 0.12 MPa and 1000 dm3/h. Fouling analysis has been studied based on the resistance-in series model. It has been found that the percentage of irreversible fouling resistance during the MF increases with increasing TMP and Q. The permeate flux regeneration has been achieved by membrane cleaning with 3 wt % NaOH and 3 wt % H3PO4 at 45 °C. The results of this study are expected to be useful in industrially employing the MF process as the first step of glycerol fermentation broth purification.


2000 ◽  
Vol 41 (10-11) ◽  
pp. 243-250 ◽  
Author(s):  
X-j. Fan ◽  
V. Urbain ◽  
Y. Qian ◽  
J. Manem

A cross-flow membrane bioreactor (MBR) for raw municipal wastewater treatment, consisting of a suspended growth bioreactor and a ceramic membrane ultrafiltration unit, was run over a period of more than 300 days in a wastewater treatment plant (WWTP). Sludge Retention Times (SRT) of 20, 10 and 5 days, respectively, and Hydraulic Retention Times (HRT) of 15 and 7.5 hours were tested. Membrane fouling was found to be a function of SRT and permeate flux. Under an SRT of 20 days and flux of 71 l/m2\ · h at 30°C, the MBR was successfully run over 70 days without the need for chemical cleaning. However chemical cleaning had to be undertaken every 3–5 days at shorter sludge retention times (typically an SRT of five days and a flux of 143 l/m2\ · h at 30°C). In this study, fouling materials were removed efficiently through chemical cleaning, with an average permeablity recovery of 87±11%.


2000 ◽  
Vol 41 (10-11) ◽  
pp. 337-343 ◽  
Author(s):  
M. Héran ◽  
S. Elmaleh

High frequency reverse filtration was evaluated while microfiltering a bentonite suspension, biologically treated wastewater and an activated sludge suspension through a 0.2 μm tubular ceramic membrane. Better results were obtained with a conventional internal layer filtration element than with an external skin membrane. However the technique was efficient in enhancing the permeate flux solely with the bentonite suspension. In the other cases, the flux was the same as in conventional cross-flow operation. Such a failure cannot be exclusively attributed to chemical interactions with the membrane since the permeate flux increased linearly with cross-flow velocity for all suspensions in conventional operation. Much research is then required to establish the technique applicability.


Processes ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Tuan-Anh Nguyen ◽  
Shiro Yoshikawa

The performance of cross-flow ultrafiltration is greatly influenced by permeate flux behavior, which depends on many factors, including solution properties, membrane characteristics, and operating conditions. Currently, most research focuses on improving membrane performance, both in terms of permeability and selectivity. Only a few studies have paid attention to how the membrane module is configured and operated. In this study, the geometric design and operating conditions of a membrane module are considered as multivariable optimization variables. The objective function is the annual cost. The cost consists of a capital investment depending on the plant scale and an operating expense associated with energy consumption. In the optimization problem, the channel dimensions (width × length × height), and operating conditions (the inlet pressure and recirculation flow rate) were considered as decision variables. The operating configuration of the membrane plant is assumed to be feed and bleed mode, and a model including the pressure drop is introduced. The model is used to simulate the membrane plant and calculate the membrane area and energy usage, which are directly related to the total cost. The genetic algorithm is used for the optimization. The effect of individual parameters on the total cost is discussed.


2014 ◽  
Vol 625 ◽  
pp. 596-599 ◽  
Author(s):  
Nur Sofuwani Zainul Abidin ◽  
Siti Aslina Hussain ◽  
Siti Mazlina Mustapa Kamal

Concentration of goat milk using cross-flow filtration unit with 10KDa molecular weight cut off (MCWO)-sized ultrafiltration membrane was examined under various operating conditions. The parameters to be optimized are trans-membrane pressure (TMP) and cross-flow velocity. Permeate flux is decreased with time due to fouling of the membrane. The localized membrane fouling may be reduced by increasing the feed flow rate and TMP to mitigate overall membrane fouling. By doing so, the transmission of lactose will also increase. The aim is to produce concentrated goat milk with minimal lactose content and thus high concentration of protein. Spray-drying method is used to convert the concentrated non-lactose milk obtained into milk powder. The milk powder then was characterized in terms of its surface particle, solubility, and nutritional content with the well-commercialized non-lactose milk. This project tackles understanding to minimize the deposition rates of particles on membrane by optimizing the involved parameters and be proved by comparing the yield obtained with well-commercialized non-lactose milk. Keywords:Goat’s milk, lactose intolerance, ultrafiltration, spray dry,membrane, concentration


2014 ◽  
Vol 68 (2) ◽  
Author(s):  
Agnieszka Urbanowska ◽  
Małgorzata Kabsch-Korbutowicz

AbstractThe removal of natural organic matter (NOM) is a critical aspect of potable water treatment because NOM compounds are precursors of harmful disinfection by-products, hence should be removed from water intended for human consumption. Ultrafiltration using ceramic membranes can be a suitable process for removal of natural substances. Previously reported experiments were dedicated to evaluating the suitability of ultrafiltration through ceramic membrane for water treatment with a focus on the separation of natural organic matter. The effects of the membrane operating time and linear flow velocity on transport and separation properties were also examined. The experiments, using a 7-channel 300 kDa MWCO ceramic membrane, were carried out with model solutions and surface water at trans-membrane pressure of 0.2–0.5 MPa. The results revealed that a loose UF ceramic membrane can successfully eliminate natural organic matter from water. The permeability of the membrane was strongly affected by the composition of the feed stream, i.e. the permeate flux decreased with an increase in the NOM concentration. The permeate flux also decreased over the period of the operation, while this parameter did not influence the effectiveness of separation, i.e. the removal of NOM. It was observed that the increased cross-flow velocity resulted in the decrease in the membrane-fouling intensity and slightly improved the retention of contaminants.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 15-22
Author(s):  
P. Kouadio ◽  
M. Tétrault

Three colored surface water nanofiltration pilot-scale projects were conducted in the province of Quebec (eastern Canada), between November 2000 and March 2002, by the company H2O Innovation (2000) inc., for the municipalities of Lac Bouchette, Latulipe-et-Gaboury and Charlesbourg (now part of Quebec City). Results indicated that nanofiltration permeate quality has an advance on present drinking water regulation standard in Quebec, but important membrane fouling occurred. Fouling can be controlled by pretreatment and optimization of the operating conditions.


1992 ◽  
Vol 25 (10) ◽  
pp. 149-162 ◽  
Author(s):  
V. L. Pillay ◽  
C. A. Buckley

Cross-flow microfiltration (CFMF) has potentially wide application in the processing of industrial and domestic waste waters. Optimum design and operation of CFMF systems necessitates a knowledge of the characteristic system behaviour, and an understanding of the mechanisms governing this behaviour. This paper is a contribution towards the elucidation and understanding of the behaviour of a woven fibre CFMF operated in the turbulent flow regime. The characteristic flux-time curve and effects of operating variables on flux are presented for a limestone suspension cross-flow filtered in a 25 mm woven fibre tube. The phenomena contributing to the shape of the flux-time curve are discussed. A model of the mechanisms governing cake growth and limit is presented. Predicted steady-state fluxes show a notably good correspondence with experimentally measured values. It is also found that the flux may not be uniquely defined by the operating conditions, but may also be a function of the operating path taken to reach the operating point. This is of significance in the start-up and operation of CFMF units.


Sign in / Sign up

Export Citation Format

Share Document