Exploring the potential application of hybrid permonosulfate/reactive electrochemical ceramic membrane on treating humic acid-dominant wastewater

Author(s):  
Quang Viet Ly ◽  
Keyou He ◽  
Tahir Maqbool ◽  
Mingming Sun ◽  
Zhenghua Zhang
Author(s):  
Lili Song ◽  
Bo Zhu ◽  
Veeriah Jegatheesan ◽  
Stephen R. Gray ◽  
Mikel C. Duke ◽  
...  

2013 ◽  
Vol 51 (25-27) ◽  
pp. 5319-5326 ◽  
Author(s):  
Shengji Xia ◽  
Yumin Zhou ◽  
Rui Ma ◽  
Yijun Xie ◽  
Jianwei Chen

Membranes ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 122 ◽  
Author(s):  
Lavern Nyamutswa ◽  
Bo Zhu ◽  
Dimuth Navaratna ◽  
Stephen Collins ◽  
Mikel Duke

Adopting an effective strategy to control fouling is a necessary requirement for all membrane processes used in the water/wastewater treatment industry to operate sustainably. The use of ultraviolet (UV) activated photocatalysis has been shown to be effective in mitigating ceramic membrane fouling by natural organic matter. The widely used configuration in which light is directed through the polluted water to the membrane’s active layer suffers from inefficiencies brought about by light absorption by the pollutants and light shielding by the cake layer. To address these limitations, directing light through the substrate, instead of through polluted water, was studied. A UV conducting membrane was prepared by dip coating TiO2 onto a sintered glass substrate. The substrate could successfully conduct UV from a lamp source, unlike a typical alumina substrate. The prepared membrane was applied in the filtration of a humic acid solution as a model compound to study natural organic matter membrane fouling. Directing UV through the substrate showed only a 1 percentage point decline in the effectiveness of the cleaning method over two cleaning events from 72% to 71%, while directing UV over the photocatalytic layer had a 9 percentage point decline from 84% to 75%. Adapting the UV-through-substrate configuration could be more useful in maintaining membrane functionality during humic acid filtration than the current method being used.


2021 ◽  
Vol 233 ◽  
pp. 01049
Author(s):  
YANG Yanqing ◽  
QIU Yan ◽  
LIU Yanhui ◽  
ZHAO Yan ◽  
LI jing ◽  
...  

Ceramic membrane has made rapid progress in industrial/municipal wastewater treatment and drinking water treatment owing to its advantageous properties over conventional polymeric membrane. The ceramic membrane processes are a rapidly emerging technology for water treatment, yet virtually no information on the performance and fouling mechanisms diatomite ceramic membrane. In this study, filtration experiments were carried out using a mixture of humic acid and kaolin which simulated surface water under constant pressure to reveal fouling characteristics of the filtration of the diatomite ceramic membrane. The results showed that the removal rate of VU254 was 52%~70%, and turbidity was 90%~95% when treat mixed water of 5-10mg/L kaolin and humic acid. And membrane surface retention and membrane pore adsorption were the mainly removal routes. And the flux slowly decreases, rapidly decreases, gradually decreases and stabilizes were three processes of diatomite ceramic membrane fouling. And the first and third stages of membrane fouling mainly caused by complete blocking, and the second stage was mainly controlled by standard blocking. The study found that humic acid would cause both the pore blocking and the fouling of the membrane surface when turbidity was present, especially the membrane surface pollution, it was the major factor of diatomite ceramic membrane fouling.


2019 ◽  
Vol 56 (4) ◽  
pp. 995-1002
Author(s):  
Mihaela-Elena Dascalu ◽  
Florin Nedeff ◽  
Ion Sandu ◽  
Emilian Mosnegutu ◽  
Andrei Victor Sandu ◽  
...  

A mathematical model regarding water filtration with a nanofiltration (NF) titanium dioxide ceramic membrane is presented. The experiments aimed to use the excitation-emission matrix (EEM) spectroscopy method to highlight the existence of humic acid (HA) in water, before and after the NF process. Following the established operating conditions, experiments were performed for each quantity of AH separately, leaving the installation to work at the appropriate parameters for 15 minutes. for each quantity of AH. The analyzes for EEM fluorescence were performed using the FP-8300 spectrofluorimeter. The collected samples were analyzed with Spectra Manager II software on fluorescence intensity (au - arbitrary units), with an emission wavelength (nm) between 460 and 640 nm and with an excitation wavelength (nm) between 350 and 600 nm. Following the experiments carried out, mathematical correlations were established between the parameters that influence the filtering process and the studied parameters. It is worth mentioning that as a result of the experiments carried out, a number of 20,450 values were obtained, which were used for the elaboration of mathematical models. These models, for sets of values of the order of tens of thousands, verified both from the point of view of the real values and from the point of view of the regression coefficients (coefficients close to the value 1), demonstrate the quantity and the very good quality of the experimental data, respectively of the measured and calculated sizes. In order to validate the generated equations, they were subjected to checks, the difference being obtained between the value obtained by experimental means and the value obtained within the mathematical model. And the value of the resulting relative error, gives information on the accuracy (truth) of the mathematical model, so that it can be extended to other experiences. It turns out that this method cannot quantitatively determine the value of a parameter, but it can highlight the presence and differences between two samples.


Author(s):  
C.E. Voegele-Kliewer ◽  
A.D. McMaster ◽  
G.W. Dirks

Materials other than polymers, e.g. ceramic silicates, are currently being investigated for gas separation processes. The permeation characteristics of one such material, Vycor (Corning Glass #1370), have been reported for the separation of hydrogen from hydrogen iodide. This paper will describe the electron microscopy techniques applied to reveal the porous microstructure of a Vycor membrane. The application of these techniques has led to an increased understanding in the relationship between the substructure and the gas transport properties of this material.


Sign in / Sign up

Export Citation Format

Share Document