scholarly journals On the macro-micro-morphology of organs of host invasion in hemiparasite Helicanthes elasticus (Desv.) Danser

Author(s):  
K.N. Sunil Kumar ◽  
K.G. Divya ◽  
M. Senthilkumar ◽  
S.G. Sreelekshmi ◽  
Hady M. El-Sheikh ◽  
...  
2021 ◽  
pp. 002199832110046
Author(s):  
Wei Feng ◽  
Chengwei Tang ◽  
Lei Liu ◽  
Jian Chen ◽  
Yang Zhang ◽  
...  

ZrB2 particles were preset to the C-AlSi interface to improve oxidation resistance of C/C preform and adjust the microstructure of the interpenetrated C/C-AlSi composite prepared through pressure infiltration of eutectic AlSi into a fiber fabric based porous C/C skeleton. Micro-morphology investigations suggested that the AlSi textures were changed from dendritic to petals-like state, and the nano to micro-scale ZrB2 particles were dispersed into AlSi and affected the distribution of Al and Si nearby carbon. Tests demonstrated that C/C-AlSi have slight lower density and thermal expansion coefficient, and higher original compressive strength, while C/C-ZrB2-AlSi composites presented an outstanding strength retention rate after thermal shock. Fracture and micro-morphology indicated that the influence of the preset ZrB2 to the interface of carbon and alloy greatly affected the generation and propagation of cracks, which determined the diverse compression behaviors of the composites before and after thermal shock.


2021 ◽  
Vol 13 (14) ◽  
pp. 7637
Author(s):  
Taekyoung Lee ◽  
Jieun Cha ◽  
Sohyun Sung

Trees’ ability to capture atmospheric Particular Matter (PM) is related to morphological traits (shape, size, and micro-morphology) of the leaves. The objectives of this study were (1) to find out whether cluster pattern of the leaves is also a parameter that affects trees’ PM capturing performance and (2) to apply the cluster patterns of the leaves on architectural surfaces to confirm its impact on PM capturing performance. Two series of chamber experiments were designed to observe the impact of cluster patterns on PM capturing performance whilst other influential variables were controlled. First, we exposed synthetic leaf structures of different cluster patterns (a large and sparsely arranged cluster pattern and a small and densely arranged cluster pattern) to artificially generated PM in a chamber for 60 min and recorded the changing levels of PM2.5 and PM10 every minute. The results confirmed that the small and densely arranged cluster pattern has more significant effect on reducing PM2.5 and PM10 than the large and sparsely arranged cluster pattern. Secondly, we created three different types of architectural surfaces mimicking the cluster patterns of the leaves: a base surface, a folded surface, and a folded and porous surface. The surfaces were also exposed to artificially generated PM in the chamber and the levels of PM2.5 and PM10 were recorded. The results confirmed that the folded and porous surface has a more significant effect on reducing PM2.5 and PM10 than other surfaces. The study has confirmed that the PM capturing performance of architectural surfaces can be improved by mimicking cluster pattern of the leaves.


2011 ◽  
Vol 306-307 ◽  
pp. 37-40 ◽  
Author(s):  
Da Hui Sun ◽  
Tian Yu Xu ◽  
Yong Jia Liu ◽  
Mei Zhang

Phase change PVA / PEG composite nanofibers were prepared by electrospinning, micro-morphology of PVA / PEG fibers with different weight content were analyzed, the phase change characteristics were also analyzed. The result showed that well distributed composite nanofibers which composed by PVA/PEG blend solution can be obtained by electrospinning.PVA fibreforming were influenced because of the existence of PEG, including bond, irregular block, small rough, uneven diameter distribution in fibers. PVA/PEG blend solution of 4:6 weight content was well fibreforming compared with other different weight content.The continuity of spinneret flow in electrospinning would directly affected by polymer solution consentrition and viscosity. Further research about which and the influence in fibers diameter and morphology will be explored. Composite nanofibers possessed reversible phase transition characteristics,Tm Essentially unchanged ,Tcwere related to the weight percentage of PEG/PVA, at the same time, the enthalpy will increase along with the gradually increase in weight percentage of PEG.


2011 ◽  
Vol 335-336 ◽  
pp. 96-100
Author(s):  
Cun Zhou ◽  
Jian Li Cheng ◽  
Yu Sun

Abstract: An epoxy based nano-SiO2/TiO2/polyimide hybrid enhanced sizing for carbon fiber was prepared by modified SiO2/TiO2precursor in PAA collosol with silane couple agent(WD-50) and eligibility surfactant via sol-gel reaction, and both ultrasonic cavitation and multi-complex technology were used during the process. The properties of PAA-SiO2-TiO2hybrid sizing and micro-morphology of carbon fiber surface were analyzed by FTIR, DSC, Particle Size Analyzer and STM. The results indicated that nanoscale SiO2•TiO2particles dispersed in the hybrid sizing film homogeneously, and a layer with nano particles was formed on carbon fiber surface after treated by the hybrid enhanceing sizing. The roughness was increased and interface properties of carbon fiber would be improved. At the same time both tensile strength and the interlaminar shear strength were increased obviously.


2011 ◽  
Vol 306-307 ◽  
pp. 1553-1556
Author(s):  
Lei Zhang ◽  
Zhi Wang ◽  
Li Ying Fan ◽  
Guo Pu Shi

The effects of kaolin on the properties of flue gas desulphurization gypsum-based steel slag composites were analyzed in this article and the influence rules of setting time, final setting time on the flexural strength and compressive strength of cementitious composites were also discussed. The micro-morphology of the composite was observed by scanning electron microscope. At the same time, the excitation mechanism of kaolin on gas desulphurization gypsum-based steel slag was put forward. It was demonstrated that kaolin with content of 3% in the composites can better stimulate the activity of steel slag and improve the mechanical properties of cementitious composites.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 255
Author(s):  
Changqing Li ◽  
Haichao Zhang ◽  
Ma Tao ◽  
Xufeng Wang ◽  
Hang Li ◽  
...  

Calcium vanadate (CaV2O6), a new product of vanadium precipitation, was obtained from vanadium slag by sodium roasting-water leaching and calcium precipitation. The separation behavior of vanadium and silicon in vanadium slag during sodium roasting and water leaching was systematically studied, and micro-morphology and valence migration behavior of vanadium and Fe in vanadium slag, roasting slag, and residue were revealed. The Na2CO3 was added to the vanadium slag at 20% mass fraction, roasted at 790 ℃, and kept for 120 min, the roasted sample was added to the deionized aqueous solution with a liquid-solid ratio of (L/S) 5mL/g, and then heated at 90 ℃ for 60 min, 89.54% vanadium and 1.96% chromium were extracted. Sodium carbonate tends to combine with vanadium to form sodium vanadate, while silicon is easy to combine with Fe and Na to form acmite (NaFeSi2O6). When the molar ratio of N (Ca/V) is 0.6 and CaO, is added to adjust the pH of vanadium leaching solution to 6.7 ± 0.1 and precipitate 90 min at 90 ℃, vanadium is precipitated in the form of CaV2O6 with a purity of 95.69%, under these conditions, the precipitation ratio is 95.03%.


2021 ◽  
Vol 1047 ◽  
pp. 62-67
Author(s):  
Shen Wang ◽  
Le Tong ◽  
Guang Jun Chen ◽  
Mao Xun Wang ◽  
Bin Dai ◽  
...  

7075 aluminum alloy is widely used due to its great performance, especially in aerospace area. In this paper, ultrasonic-assisted grinding technology is used to process 7075 aluminum alloy. The data is obtained through experiments, and the surface roughness and morphology of ultrasonic assisted grinding and conventional grinding under different spindle speeds, feed rates, and amplitudes are analyzed. Research has found that the increase in spindle speed and amplitude will improve the quality of the machined surface and reduce the surface roughness by 82.1% and 36%. However, with the increase of feed rate, the surface quality decreased significantly, and the surface roughness increased by 55.6%. The surface micro-morphology of the machined workpiece is observed, and the effects of different processing parameters on the surface micro-morphology are obtained.


Sign in / Sign up

Export Citation Format

Share Document