Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – Critical review and research perspectives

2011 ◽  
Vol 43 (7) ◽  
pp. 1398-1410 ◽  
Author(s):  
Véronique Bellon-Maurel ◽  
Alex McBratney
2020 ◽  
pp. 000370282097470
Author(s):  
Joshua M. Ottaway ◽  
J. Chance Carter ◽  
Kristl L Adams ◽  
Joseph Camancho ◽  
Barry Lavine ◽  
...  

The peroxide value (PV) of edible oils is a measure of the degree of oxidation, which directly relates to the freshness of the oil sample. Several studies previously reported in the literature have paired various spectroscopic techniques with multivariate analyses to rapidly determine PVs using field portable and process instrumentation; those efforts presented ‘best-case’ scenarios with oils from narrowly defined training and test sets. The purpose of this paper is to evaluate the use of near- and mid-infrared absorption and Raman scattering spectroscopies on oil samples from different oil classes, including seasonal and vendor variations, to determine which measurement technique, or combination thereof, is best for predicting PVs. Following PV assays of each oil class using an established titration-based method, global and global-subset calibration models were constructed from spectroscopic data collected on the 19 oil classes used in this study. Spectra from each optical technique were used to create partial least squares regression (PLSR) calibration models to predict the PV of unknown oil samples. A global PV model based on near-infrared (8 mm optical path length – OPL) oil measurements produced the lowest RMSEP (4.9), followed by 24 mm OPL near infrared (5.1), Raman (6.9) and 50 μm OPL mid-infrared (7.3). However, it was determined that the Raman RMSEP resulted from chance correlations. Global PV models based on low-level fusion of the NIR (8 and 24 mm OPL) data and all infrared data produced the same RMSEP of 5.1. Global subset models, based on any of the spectroscopies and olive oil training sets from any class (pure, extra light, extra virgin), all failed to extrapolate to the non-olive oils. However, the near-infrared global subset model built on extra virgin olive oil could extrapolate to test samples from other olive oil classes.


Planta Medica ◽  
2017 ◽  
Vol 84 (06/07) ◽  
pp. 420-427 ◽  
Author(s):  
Cornelia Pezzei ◽  
Stefan Schönbichler ◽  
Shah Hussain ◽  
Christian Kirchler ◽  
Verena Huck-Pezzei ◽  
...  

AbstractIn this study, novel near-infrared and attenuated total reflectance mid-infrared spectroscopic methods coupled with multivariate data analysis were established enabling the determination of thymol, rosmarinic acid, and the antioxidant capacity of Thymi herba. A new high-performance liquid chromatography method and UV-Vis spectroscopy were applied as reference methods. Partial least squares regressions were carried out as cross and test set validations. To reduce systematic errors, different data pretreatments, such as multiplicative scatter correction, 1st derivative, or 2nd derivative, were applied on the spectra. The performances of the two infrared spectroscopic techniques were evaluated and compared. In general, attenuated total reflectance mid-infrared spectroscopy demonstrated a slightly better predictive power (thymol: coefficient of determination = 0.93, factors = 3, ratio of performance to deviation = 3.94; rosmarinic acid: coefficient of determination = 0.91, factors = 3, ratio of performance to deviation = 3.35, antioxidant capacity: coefficient of determination = 0.87, factors = 2, ratio of performance to deviation = 2.80; test set validation) than near-infrared spectroscopy (thymol: coefficient of determination = 0.90, factors = 6, ratio of performance to deviation = 3.10; rosmarinic acid: coefficient of determination = 0.92, factors = 6, ratio of performance to deviation = 3.61, antioxidant capacity: coefficient of determination = 0.91, factors = 6, ratio of performance to deviation = 3.42; test set validation). The capability of infrared vibrational spectroscopy as a quick and simple analytical tool to replace conventional time and chemical consuming analyses for the quality control of T. herba could be demonstrated.


2020 ◽  
Vol 74 (7) ◽  
pp. 819-831 ◽  
Author(s):  
Kiran Haroon ◽  
Ali Arafeh ◽  
Stephanie Cunliffe ◽  
Philip Martin ◽  
Thomas Rodgers ◽  
...  

In many industries, viscosity is an important quality parameter which significantly affects consumer satisfaction and process efficiency. In the personal care industry, this applies to products such as shampoo and shower gels whose complex structures are built up of micellar liquids. Measuring viscosity offline is well established using benchtop rheometers and viscometers. The difficulty lies in measuring this property directly in the process via on or inline technologies. Therefore, the aim of this work is to investigate whether proxy measurements using inline vibrational spectroscopy, e.g., near-infrared (NIR), mid-infrared (MIR), and Raman, can be used to predict the viscosity of micellar liquids. As optical techniques, they are nondestructive and easily implementable process analytical tools where each type of spectroscopy detects different molecular functionalities. Inline fiber optic coupled probes were employed; a transmission probe for NIR measurements, an attenuated total reflectance probe for MIR and a backscattering probe for Raman. Models were developed using forward interval partial least squares variable selection and log viscosity was used. For each technique, combinations of pre-processing techniques were trialed including detrending, Whittaker filters, standard normal variate, and multiple scatter correction. The results indicate that all three techniques could be applied individually to predict the viscosity of micellar liquids all showing comparable errors of prediction: NIR: 1.75 Pa s; MIR: 1.73 Pa s; and Raman: 1.57 Pa s. The Raman model showed the highest relative prediction deviation (RPD) value of 5.07, with the NIR and MIR models showing slightly lower values of 4.57 and 4.61, respectively. Data fusion was also explored to determine whether employing information from more than one data set improved the model quality. Trials involved weighting data sets based on their signal-to-noise ratio and weighting based on transmission curves (infrared data sets only). The signal-to-noise weighted NIR–MIR–Raman model showed the best performance compared with both combined and individual models with a root mean square error of cross-validation of 0.75 Pa s and an RPD of 10.62. This comparative study provides a good initial assessment of the three prospective process analytical technologies for the measurement of micellar liquid viscosity but also provides a good basis for general measurements of inline viscosity using commercially available process analytical technology. With these techniques typically being employed for compositional analysis, this work presents their capability in the measurement of viscosity—an important physical parameter, extending the applicability of these spectroscopic techniques.


1989 ◽  
Vol 43 (1) ◽  
pp. 55-60 ◽  
Author(s):  
A. D. Stuart ◽  
S. M. Trotman ◽  
K. J. Doolan ◽  
P. M. Fredericks

Used lubricating oils have been examined by a number of spectroscopic techniques to assess whether it might be possible to improve turn-around time for laboratory analyses or to develop a simple oil quality sensor which could be used in a service workshop. Investigation shows that the development of an oil quality sensor based on discrete wavenumber measurements in the mid-infrared region would not be warranted, but heptane-insolubles can be estimated from a single measurement in the near-infrared region, and this could form the basis of a simple sensor. Considerable information about the quality of a used oil is available through a thorough examination of its mid-infrared spectrum. Use of the computer program CIRCOM, which employs factor analysis followed by multiple linear regression, allowed useful correlations to be obtained for n-heptane—insolubles level and viscosity and total base number of the oil sample. This supplements and extends the previously described methods for obtaining information such as fuel and water levels by IR analysis.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2559 ◽  
Author(s):  
Pei ◽  
Zuo ◽  
Zhang ◽  
Wang

Origin traceability is important for controlling the effect of Chinese medicinal materials and Chinese patent medicines. Paris polyphylla var. yunnanensis is widely distributed and well-known all over the world. In our study, two spectroscopic techniques (Fourier transform mid-infrared (FT-MIR) and near-infrared (NIR)) were applied for the geographical origin traceability of 196 wild P. yunnanensis samples combined with low-, mid-, and high-level data fusion strategies. Partial least squares discriminant analysis (PLS-DA) and random forest (RF) were used to establish classification models. Feature variables extraction (principal component analysis—PCA) and important variables selection models (recursive feature elimination and Boruta) were applied for geographical origin traceability, while the classification ability of models with the former model is better than with the latter. FT-MIR spectra are considered to contribute more than NIR spectra. Besides, the result of high-level data fusion based on principal components (PCs) feature variables extraction is satisfactory with an accuracy of 100%. Hence, data fusion of FT-MIR and NIR signals can effectively identify the geographical origin of wild P. yunnanensis.


Soil Research ◽  
2005 ◽  
Vol 43 (6) ◽  
pp. 713 ◽  
Author(s):  
Adam Pirie ◽  
Balwant Singh ◽  
Kamrunnahar Islam

Reflectance spectroscopy techniques in the ultraviolet, visible, near-infrared and mid-infrared regions are alternatives for many traditional laboratory methods for measuring soil properties. However, debate exists over whether the near-infrared (700–2500 nm) or the mid-infrared (MIR, 2500–25000 nm) region of the electromagnetic spectrum is more useful for predicting soil properties. Therefore, the aim of this study was to compare UV-VIS-NIR and MIR spectroscopic techniques to predict several soil properties. A total of 415 surface and subsurface soil samples were collected from widely spread locations within New South Wales and south-eastern Queensland of Australia to model the proposed hypothesis. Principal component regression analysis (PCR) was used to develop calibration and validation models from soil spectra and reference laboratory values. The models developed using MIR spectra achieved higher prediction accuracy (regression coefficient, r2 = 0.62–0.85) for pH, organic carbon, clay, sand, CEC, and exchangeable Ca and Mg than that obtained by UV-VIS-NIR spectra (r2 = 0.28–0.76). PCR models were also developed for the combined spectral regions (UV-VIS-NIR+MIR). The models developed using combined spectra were also found to predict pH, organic carbon, clay, sand, CEC, and exchangeable Ca and Mg with acceptable accuracy (r2 = 0.59–0.79). The results of this study indicate that MIR spectra are better than UV-VIS-NIR spectra for estimation of common soil properties.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Da Wang ◽  
Wenwen Wei ◽  
Yanhua Lai ◽  
Xiangzheng Yang ◽  
Shaojia Li ◽  
...  

The quality of strawberry powder depends on the freshness of the fruit that produces the powder. Therefore, identifying whether the strawberry powder is made from freshly available, short-term stored, or long-term stored strawberries is important to provide consumers with quality-assured strawberry powder. Nevertheless, such identification is difficult by naked eyes, as the powder colours are very close. In this work, based on the measurement of near-infrared (NIR) spectroscopy and mid-infrared (MIR) spectra of strawberry powered, good classification results of 100.00% correct rates to distinguish whether the strawberry powder was made from freshly available or stored fruit was obtained. Furthermore, partial least squares regression and least squares support vector machines (LS-SVM) models were established based on NIR, MIR, and combination of NIR and MIR data with full variables or optimal variables of strawberry powder to predict the storage days of strawberries that produced the powder. Optimal variables were selected by successive projections algorithm (SPA), uninformation variable elimination, and competitive adaptive reweighted sampling, respectively. The best model was determined as the SPA-LS-SVM model based on MIR spectra, which had the residual prediction deviation (RPD) value of 11.198 and the absolute difference between root-mean-square error of calibration and prediction (AB_RMSE) value of 0.505. The results of this work confirmed the feasibility of using NIR and MIR spectroscopic techniques for rapid identification of strawberry powder made from freshly available and stored strawberry.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 988 ◽  
Author(s):  
Abdo Hassoun ◽  
María Guðjónsdóttir ◽  
Miguel A. Prieto ◽  
Paula Garcia-Oliveira ◽  
Jesus Simal-Gandara ◽  
...  

In this review, we summarize the most recent advances in monitoring changes induced in fish and other seafood, and meat and meat products, following the application of traditional processing processes by means of conventional and emerging advanced techniques. Selected examples from the literature covering relevant applications of spectroscopic methods (i.e., visible and near infrared (VIS/NIR), mid-infrared (MIR), Raman, nuclear magnetic resonance (NMR), and fluorescence) will be used to illustrate the topics covered in this review. Although a general reluctance toward using and adopting new technologies in traditional production sectors causes a relatively low interest in spectroscopic techniques, the recently published studies have pointed out that these techniques could be a powerful tool for the non-destructive monitoring and process optimization during the production of muscle food products.


2021 ◽  
pp. 000370282199450
Author(s):  
Joshua M. Ottaway ◽  
J. Chance Carter ◽  
Kristl L Adams ◽  
Joseph Camancho ◽  
Barry Lavine ◽  
...  

The peroxide value (PV) of edible oils is a measure of the degree of oxidation, which directly relates to the freshness of the oil sample. Several studies previously reported in the literature have paired various spectroscopic techniques with multivariate analyses to rapidly determine PVs using field portable and process instrumentation; those efforts presented ‘best-case’ scenarios with oils from narrowly defined training and test sets. The purpose of this paper is to evaluate the use of near- and mid-infrared absorption and Raman scattering spectroscopies on oil samples from different oil classes, including seasonal and vendor variations, to determine which measurement technique, or combination thereof, is best for predicting PVs. Following PV assays of each oil class using an established titration-based method, global and global-subset calibration models were constructed from spectroscopic data collected on the 19 oil classes used in this study. Spectra from each optical technique were used to create partial least squares regression (PLSR) calibration models to predict the PV of unknown oil samples. A global PV model based on near-infrared (8 mm optical path length – OPL) oil measurements produced the lowest RMSEP (4.9), followed by 24 mm OPL near infrared (5.1), Raman (6.9) and 50 μm OPL mid-infrared (7.3). However, it was determined that the Raman RMSEP resulted from chance correlations. Global PV models based on low-level fusion of the NIR (8 and 24 mm OPL) data and all infrared data produced the same RMSEP of 5.1. Global subset models, based on any of the spectroscopies and olive oil training sets from any class (pure, extra light, extra virgin), all failed to extrapolate to the non-olive oils. However, the near-infrared global subset model built on extra virgin olive oil could extrapolate to test samples from other olive oil classes.


Sign in / Sign up

Export Citation Format

Share Document