Microbial processes controlling P availability in forest spodosols as affected by soil depth and soil properties

2012 ◽  
Vol 44 (1) ◽  
pp. 39-48 ◽  
Author(s):  
David L. Achat ◽  
Laurent Augusto ◽  
Mark R. Bakker ◽  
Anne Gallet-Budynek ◽  
Christian Morel
Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 390
Author(s):  
Ramiro Recena ◽  
Ana M. García-López ◽  
Antonio Delgado

Zinc (Zn) deficiency constrains crop yield and quality, but soil factors influencing Zn availability to plants and reactions of applied Zn fertilizer are not fully understood. This work is aimed at studying Zn availability in soil and the use efficiency of Zn fertilizers by plants as affected by soil properties and particularly by soil available P. We performed a pot experiment involving four consecutive crops fertilized with Zn sulfate using 36 soils. The cumulative Zn uptake and dry matter yield in the four crops increased with increased initial diethylenetriamine pentaacetic acid extraction of Zn (DTPA-Zn) (R2 = 0.75 and R2 = 0.61; p < 0.001). The initial DTPA-Zn increased with increased Olsen P (R2 = 0.41; p < 0.001) and with increased ratio of Fe in poorly crystalline to Fe in crystalline oxides (R2 = 0.58; p < 0.001). DTPA-Zn decreased with increased cumulative Zn uptake, but not in soils with DTPA-Zn < 0.5 mg kg−1. Overall, the available Zn is more relevant in explaining Zn uptake by plants than applied Zn sulfate. However, in Zn-deficient soils, Zn fertilizer explained most of the Zn uptake by crops. Poorly crystalline Fe oxides and P availability exerted a positive role on Zn availability to plants in soil.


Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Hadi Sohrabi ◽  
Meghdad Jourgholami ◽  
Mohammad Jafari ◽  
Farzam Tavankar ◽  
Rachele Venanzi ◽  
...  

Soil damage caused by logging operations conducted to obtain and maximize economic benefits has been established as having long-term effects on forest soil quality and productivity. However, a comprehensive study of the impact of logging operations on earthworms as a criterion for soil recovery has never been conducted in the Hyrcanian forests of Iran. The aim of this study was to determine the changes in soil biological properties (earthworm density and biomass) and its recovery process under the influence of traffic intensity, slope and soil depth in various intervals according to age after logging operations. Soil properties were compared among abandoned skid trails with different ages (i.e., 3, 10, 20, and 25 years) and an undisturbed area. The results showed that earthworm density and biomass in the high traffic intensity and slope class of 20–30% at the 10–20 cm depth of the soil had the lowest value compared to the other treatments. Twenty-five years after the logging operations, the earthworm density at soil depth of 0–10 and 10–20 cm was 28.4% (0.48 ind. m−2) and 38.6% (0.35 ind. m−2), which were less than those of the undisturbed area, respectively. Meanwhile, the earthworm biomass at a soil depth of 0–10 and 10–20 cm was 30.5% (2.05 mg m−2) and 40.5% (1.54 mg m−2) less than the values of the undisturbed area, respectively. The earthworm density and biomass were positively correlated with total porosity, organic carbon and nitrogen content, while negatively correlated with soil bulk density and C/N ratio. According to the results, 25 years after logging operations, the earthworm density and biomass on the skid trails were recovered, but they were significantly different with the undisturbed area. Therefore, full recovery of soil biological properties (i.e., earthworm density and biomass) takes more than 25 years. The conclusions of our study reveal that the effects of logging operations on soil properties are of great significance, and our understanding of the mechanism of soil change and recovery demand that harvesting operations be extensively and properly implemented.


2017 ◽  
Vol 10 (5) ◽  
pp. 1435
Author(s):  
Viviane Capoane ◽  
Tales Tiecher ◽  
Danilo Rheinheimer dos Santos

Este trabalho investigou os efeitos da topografia e das práticas de uso e manejo do solo na variabilidade de alguns atributos do solo ao longo de três topossequências localizadas no planalto do Rio Grande do Sul. As topossequências (Tps) estão inseridas em uma bacia hidrográfica situada no município de Júlio de Castilhos. Na Tp1 foram definidos quatro pontos de amostragem e na Tp2 e Tp3, cinco pontos. Em cada perfil foram coletadas amostras em 5 camadas de solo (0‒5, 5‒10, 10‒20, 20‒40 e 40‒60 cm). Em laboratório foram determinados os atributos: densidade, argila, pH em água, carbono (C) orgânico total, fósforo (P) total, P orgânico total, P disponível, óxidos de ferro (Fe) e alumínio (Al) cristalinos e amorfos. Os resultados encontrados mostram que o movimento de sedimentos em superfície e através do perfil do solo é controlado pela posição, forma e declividade da encosta e, pelas atividades antrópicas como o uso e manejo do solo e aplicação de fertilizantes. Considerando as classes de uso da terra, os maiores teores de C e P (total, orgânico e disponível) foram obtidos na área úmida, seguido da lavoura e campo nativo. Considerando a posição na encosta os teores de C e P foram maiores na baixada seguido da base da encosta, topo e meia encosta. A condição hidromórfica ao longo das topossequências desempenhou um papel importante na disponibilidade de P, acúmulo C orgânico total e solubilização dos óxidos de Fe e Al. A B ST R A C TThis work investigated the effects of topography and land use and soil management practices on the variability of some soil properties along three toposequences located in the Rio Grande do Sul plateau, Southern Brazil. The toposequences (Tps) evaluated are from a watershed located in the municipality of Júlio de Castilhos. Soil samples were taken in four points in Tp1 and in five points in Tp2 and Tp3. In each point samples were taken at five depths (0‒5, 5‒10, 10‒20, 20‒40, and 40‒60 cm). The soil properties evaluated were soil density, clay, pH in water, total organic carbon (C), total phosphorus (P), total organic P, available P, and amorphous and crystalline iron (Fe) and aluminum (Al) oxides. Results show that the transport of sediments on the surface and through the soil profile is controlled by topographic position, landform, slope, and also by the anthropic activities such as the use and management of the soil and the application of fertilizers. Considering the classes of land use, the highest levels of C and P (total, organic and available) were obtained in the wetlands, followed by the crop fields and natural grasslands. Considering the topographic position, the contents of C and P were higher in the floodplain followed by the base of the slope, top and middle slope. Hydromorphic conditions along the toposequences played an important role in P availability, total organic C accumulation and solubilization of Fe and Al oxides.keywords: Land use, topographic position, soil profile, soil properties. 


2019 ◽  
Vol 23 (9) ◽  
pp. 3553-3570 ◽  
Author(s):  
John C. Hammond ◽  
Adrian A. Harpold ◽  
Sydney Weiss ◽  
Stephanie K. Kampf

Abstract. Streamflow generation and deep groundwater recharge may be vulnerable to loss of snow, making it important to quantify how snowmelt is partitioned between soil storage, deep drainage, evapotranspiration, and runoff. Based on previous findings, we hypothesize that snowmelt produces greater streamflow and deep drainage than rainfall and that this effect is greatest in dry climates. To test this hypothesis we examine how snowmelt and rainfall partitioning vary with climate and soil properties using a physically based variably saturated subsurface flow model, HYDRUS-1D. We developed model experiments using observed climate from mountain regions and artificial climate inputs that convert all precipitation to rain, and then evaluated how climate variability affects partitioning in soils with different hydraulic properties and depths. Results indicate that event-scale runoff is higher for snowmelt than for rainfall due to higher antecedent moisture and input rates in both wet and dry climates. Annual runoff also increases with snowmelt fraction, whereas deep drainage is not correlated with snowmelt fraction. Deep drainage is less affected by changes from snowmelt to rainfall because it is controlled by deep soil moisture changes over longer timescales. Soil texture modifies daily wetting and drying patterns but has limited effect on annual water budget partitioning, whereas increases in soil depth lead to lower runoff and greater deep drainage. Overall these results indicate that runoff may be substantially reduced with seasonal snowpack decline in all climates, whereas the effects of snowpack decline on deep drainage are less consistent. These mechanisms help explain recent observations of streamflow sensitivity to changing snowpack and highlight the importance of developing strategies to plan for changes in water budgets in areas most at risk for shifts from snow to rain.


2019 ◽  
Vol 65 (3-4) ◽  
pp. 92-105
Author(s):  
Xinguang Yang ◽  
Xilai Li ◽  
Mingming Shi ◽  
Liqun Jin ◽  
Huafang Sun

Replacement of topsoil to an appropriate depth is one of the key methods for ecological restoration. The objective of this study was to investigate the effects of topsoil replacement depth on vegetation and soil properties, and to identify the optimum soil depth for reclamation of coal mine spoils in a cold alpine mining area. We sowed 3 herbaceous species after coal mine spoil heaps were treated with topsoil to 3 depths (0, 20‒25, 40‒45 cm). The variations in vegetation community structure, plant growth, soil properties were measured at different replaced topsoil depths. The correlations between plant and soil properties were analyzed statistically. The results showed species richness, diversity and evenness were not significantly different among different depths of topsoil (P > 0.05). Vegetation coverage, density, height and aboveground biomass increased significantly (P < 0.05) with increasing topsoil depth. Soil properties did not change significantly with increasing topsoil depth (P > 0.05), but soil organic matter was significantly higher at 40‒45 cm topsoil depth than at other two depths (P < 0.05). All soil properties, with the exception of total potassium, were positively correlated with the plant growth parameters. The 40‒45 cm topsoil depth of replacement should be considered as effective method in reclaiming coal mine spoils. The use of both topsoil replacement to a depth of 40‒45 cm and sowing of suitable herbaceous seeds is found to be an effective restoration strategy. Additionally, fertilization might be used as a substitute for artificial topsoil replacement to improve soil quality and speed up revegetation process by the positive plant-soil interactions.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 116 ◽  
Author(s):  
Mirna Valdez-Hernández ◽  
Rossana Gil-Medina ◽  
Jorge O. López-Martínez ◽  
Nuria Torrescano-Valle ◽  
Nancy Cabanillas-Terán ◽  
...  

Open-pit mining is a common activity in the Yucatan Peninsula for the extraction of limestone. These areas are characterized by the total removal of the natural vegetation cover and soil in order to access calcareous material. The present study shows the composition and structure of the vegetation in five quarries after approximately ten years of abandonment, and the target vegetation near to the quarries in southeastern Mexico. A linear mixed model showed that P availability is one of the limiting factors for species establishment in the quarries. Using a canonical correspondence analysis (CCA), the distribution of the species was determined in relation to the edaphic variables: soil depth, the percentage of organic matter (OM), cationic exchange capacity (CEC), pH and texture. Twenty-six families, 46 genera and 50 species were recorded in the quarries, and 25 families, 45 genera and 47 species were recorded in the conserved areas. The dominant species in the quarries belong to the families Poaceae, Fabaceae, Rubiaceae and Anacardiaceae. The quarries with higher values of OM (2%), CEC (24 Cmol/kg), depth (11 cm) and sand percentage (31%) include the following species Lysiloma latisiliquum (L.) Benth., Metopium brownei (Jacq.) Urb. and Bursera simaruba (L.) Sarg., which are common in secondary forests. Quarries with lower values of OM (0.4%), CEC (17 Cmol/kg) and depth (5.02), and with a higher percentage of silt (42%) were dominated by herbs belonging to Poaceae and by Borreria verticillate (L.) G. Mey., which are typical in disturbed areas of southeastern Mexico. In all cases, the pH was slightly alkaline due to the content of calcium carbonate (CaCO3), characteristic of the soils of the region.


Author(s):  
Zhikang Wang ◽  
Ziyun Chen ◽  
Xiangxiang Fu

The inoculation of beneficial microorganisms to improve plant growth and soil properties is a promising strategy in the soil amendment. However, the effects of co-inoculation with phosphate-solubilizing bacteria (PSB) and N2-fixing bacteria (NFB) on the soil properties of typical C-deficient soil remain unclear. Based on a controlled experiment and a pot experiment, we examined the effects of PSB (M: Bacillus megaterium and F: Pseudomonas fluorescens), NFB (C: Azotobacter chroococcum and B: Azospirillum brasilence), and combined PSB and NFB treatments on C, N, P availability, and enzyme activities in sterilized soil, as well as the growth of Cyclocarya Paliurus seedlings grow in unsterilized soil. During a 60-day culture, prominent increases in soil inorganic N and available P contents were detected after bacteria additions. Three patterns were observed for different additions according to the dynamic bacterial growth. Synergistic effects between NFB and PSB were obvious, co-inoculations with NFB enhanced the accumulation of available P. However, decreases in soil available P and N were observed on the 60th day, which was induced by the decreases in bacterial quantities under C deficiency. Besides, co-inoculations with PSB and NFB resulted in greater performance in plant growth promotion. Aimed at amending soil with a C supply shortage, combined PSB and NFB treatments are more appropriate for practical fertilization at intervals of 30–45 days. The results demonstrate that co-inoculations could have synergistic interactions during culture and application, which may help with understanding the possible mechanism of soil amendment driven by microorganisms under C deficiency, thereby providing an alternative option for amending such soil.


Soil Research ◽  
2009 ◽  
Vol 47 (4) ◽  
pp. 362 ◽  
Author(s):  
Xirui Zhang ◽  
Hongwen Li ◽  
Jin He ◽  
Qingjie Wang ◽  
Mohammad H. Golabi

Conservation tillage is becoming increasingly attractive to farmers because it involves lower production costs than does conventional tillage. The long-term effects of sub-soiling tillage (ST), no tillage (NT), and conventional tillage (CT) on soil properties and crop yields were investigated over an 8-year period (2000–07). The study was conducted in a 2-crop-a-year region (Daxing) and a 1-crop-a-year region (Changping) of the Beijing area in China. At 0–0.30 m soil depth, water stability of macro-aggregates (>0.25 mm) was much greater for ST (22.1%) and NT (12.0%) than for CT in Daxing, and the improvements in Changping were 18.9% and 9.5%, respectively. ST and NT significantly (P < 0.05) improved aeration porosity by 14.5% and 10.6%, respectively, at Daxing and by 17.0% and 8.6% at Changping compared with CT treatment. Soil bulk density after 8 years was 0.8–1.5% lower in ST and NT treatments than in CT at both sites. Soil organic matter and available N and P followed the same order ST ≈ NT > CT at both sites. Consequently, crop yields in ST and NT plots were higher than in CT plots due to improved soil physical and chemical properties. Within the conservation tillage treatments, despite similar economic benefit, the effects on crop yields for ST were better than for NT. Mean (2000–07) crop yields for ST were 0.2% and 1.5% higher than for NT at Daxing and Changping, respectively. We therefore conclude that ST is the most suitable conservation tillage practice for annual 2-crop-a-year and 1-crop-a-year regions in the Beijing area.


2017 ◽  
Author(s):  
Madlene Nussbaum ◽  
Lorenz Walthert ◽  
Marielle Fraefel ◽  
Lucie Greiner ◽  
Andreas Papritz

Abstract. High-resolution maps of soil properties are a prerequisite for assessing soil threats and soil functions and to foster sustainable use of soil resources. For many regions in the world precise maps of soil properties are missing, but often sparsely sampled and discontinuous (legacy) soil data are available. Soil property data (response) can then be related by digital soil mapping (DSM) to spatially exhaustive environmental data that describe soil forming factors (covariates) to create spatially continuous maps. With air- and spaceborne remote sensing data and multi-scale terrain analysis large sets of covariates have become common. Building parsimonious models, amenable to pedological interpretation, is then a challenging task. We propose a new boosted geoadditive modelling framework (geoGAM) for DSM. A geoGAM models smooth nonlinear relations between responses and single covariates and combines these model terms additively. Residual spatial autocorrelation is captured by a smooth function of spatial coordinates and nonstationary effects are included by interactions between covariates and smooth spatial functions. The core of fully automated model building for geoGAM is componentwise gradient boosting. We illustrate the application of the geoGAM framework by using soil data from the Canton of Zurich, Switzerland. We modelled effective cation exchange capacity (ECEC) in forest topsoils as continuous response. For agricultural land we predicted the presence of waterlogged horizons in given soil depth layers as binary and drainage classes as ordinal responses. For the latter we used proportional odds geoGAM taking the ordering of the response properly into account. Fitted geoGAM contained only few covariates (7 to 17) selected from large sets (333 covariates for forests, 498 for agricultural land). Model sparsity allowed covariate interpretation by partial effects plots. Prediction intervals were computed by model-based bootstrapping for ECEC. Predictive performance of the fitted geoGAM, tested with independent validation data and specific skill scores (SS) for continuous, binary and ordinal responses, compared well with other studies that modelled similar soil properties. SS of 0.23 up to 0.53 (with SS = 1 for perfect predictions and SS = 0 for zero explained variance) were achieved depending on response and type of score. geoGAM combines efficient model building from large sets of covariates with ease of effect interpretation and therefore likely raises the acceptance of DSM products by end-users.


Sign in / Sign up

Export Citation Format

Share Document