Toward low-cost large-area CIGS thin film: Compositional and structural variations in sequentially electrodeposited CIGS thin films

Solar Energy ◽  
2016 ◽  
Vol 125 ◽  
pp. 415-425 ◽  
Author(s):  
Ming-Hua Yeh ◽  
Hong-Ru Hsu ◽  
Kai-Cheng Wang ◽  
Shih-Jung Ho ◽  
Guang-Hong Chen ◽  
...  
Solar Energy ◽  
2016 ◽  
Vol 132 ◽  
pp. 547-557 ◽  
Author(s):  
Ming-Hua Yeh ◽  
Shih-Jung Ho ◽  
Guang-Hong Chen ◽  
Chang-Wei Yeh ◽  
Pin-Ru Chen ◽  
...  

2015 ◽  
Vol 804 ◽  
pp. 183-186
Author(s):  
Prapon Lertloypanyachai ◽  
Eakgapon Kaewnuam ◽  
Krittiya Sreebunpeng

Titanium dioxide (TiO2) is coated onto the materials (e.g.glass ceramic) to inhibit the bacteria growth. TiO2has become a popular photocatalyst for both air and water purification. It has also shown to be very active for bacterial destruction even under UV light. The photocatalytic of TiO2involves the light-induced catalysis of reducing and oxidizing reactions on the surface of materials. The spray pyrolysis technique for material synthesis in thin-film configuration is an interesting option due to the use of inexpensive precursor materials and low-cost equipment suitable for large-area coatings. In this research, TiO2thin films were deposited onto glass substrates using spray pyrolysis technique. Escherichia coli (E.coli) was used as testing bacteria. TiO2thin films showed some antibacterial effect in the halo test.


2004 ◽  
Vol 833 ◽  
Author(s):  
W. D. Nothwanga ◽  
M. W. Cole ◽  
P. C. Joshi ◽  
S. Hirsch ◽  
E. Ngo ◽  
...  

ABSTRACTThe US Army is actively pursuing technologies to enable transformation goals of a lighter, faster, more potent force via affordable, electronically scanned phased array antennas (ESA's) that will provide the means for achieving a high data rate with beyond-line-of-sight, mobile communications. In order to transition this technology to Army applications, it is important that the cost of each device be decreased from current technology. Traditionally, paraelectric, active thin films of magnesium doped barium strontium titanate, have been deposited on expensive ceramic (MgO, LaAlO3, SrTiO3, Al2O3) substrates, and compositionally designed for tunable microwave applications. By integrating an active, thin film material with a large area, low cost, microwave friendly substrate, the cost could be significantly reduced. While Si is not a suitable substrate for microwave applications, a low cost, microwave friendly, buffer layer on silicon would be.A high performance Ta2O5 thin film, passive, buffer layer on Si substrates has been successfully designed, fabricated, characterized, and optimized via metalorganic solution decomposition technique. The optimized Ta2O5 based thin film exhibited suitable microwave material properties, including an enhanced dielectric constant (εr = 45.6), low dielectric loss (tan δ=0.006), low leakage current, high film resistivity (ρ=1012 Ω-cm at E=1 MV/cm), excellent temperature stability (temperature coefficient of capacitance of 52 ppm/°C), and outstanding bias stability of capacitance (∼1.41% at 1 MV/cm). The permittivity and dissipation factor, also of extreme importance, exhibited minimal dielectric dispersion with frequency. The dielectric passive buffer layer film was typified by a uniform dense microstructure with minimal defects, and a smooth, nano-scale fine grain, crack and pinhole free surface morphology. At elevated processing temperature, there was negligible elemental interdiffusion at the interface between the substrate and buffer layer as verified by Rutherford Backscatter Spectroscopy and Auger Spectroscopy, ensuring long-term reliability of the heterostructure.By developing a passive, thin film material that is microwave friendly, we have demonstrated the direct integration of paraelectric active thin films with silicon substrates. This should allow phase shifter materials technology to be implemented across a wide spectrum of Army and commercial applications, specifically, affordable, mobile phased array antenna systems for a variety of DoD applications.


2001 ◽  
Vol 15 (17n19) ◽  
pp. 667-670 ◽  
Author(s):  
Y. RODRÍGUEZ-LAZCANO ◽  
M. T. S. NAIR ◽  
P. K. NAIR

The possibility of generating ternary compounds through annealing thin film stacks of binary composition has been demonstrated before. In this work we report a method to produce large area coating of ternary compounds through a reaction in solid state between thin films of Sb2S3 and CuS. Thin films of Sb2S3 -CuS were deposited on glass substrates in the sequence of Sb2S3 followed by CuS (on Sb2S3 ) using chemical bath deposition method. The multilayer stack, thus produced, of approximately 0.5 μm in thickness, where annealed under nitrogen and argon atmospheres at different temperatures to produce films of ternary composition, CuxSbySz . An optical band gap of ~1.5 eV was observed in these films, suggesting that the thin films of ternary composition formed in this way are suitable for use as absorber materials in photovoltaic devices. The results on the analyses of structural, electrical and optical properties of films formed with different combinations of thickness in the multilayers will be discussed in the paper.


Author(s):  
Jianwen Liu ◽  
Wangping Wu ◽  
Xiang Wang

Developing novel hydrogen evolution reaction (HER) catalysts with high activity, high stability and low cost is of great importance for the applications of hydrogen energy. In this work, iridium-nickel (Ir-Ni) thin films were electrodeposited on a copper foam as electrocatalyst for HER, and electrodeposition mechanism of Ir-Ni film was studied. The morphology and chemical composition of thin films were determined by scanning electron microscopy and energy-dispersive spectroscopy, respectively. The electrocatalytic performances of the films were estimated by linear sweep voltammograms, electrochemical impedance spectroscopy and cyclic voltammetry. The results show that Ir-Ni thin films were attached to the substrate of porous structure and hollow topography. The deposition of Ni was preferable in the electrolyte without the addition of additives, and Ir-Ni thin film was alloyed, resulting in high deposition rate for Ir42Ni58 thin film, and subsequently an increase of Ir content in the thin films of Ir80Ni20 and Ir88Ni12. Ir-Ni thin films with Tafel slopes of 40-49 mV·dec-1 exhibited highly efficient electrocatalytic activity for HER. The electrocatalytic activity of Ir-Ni thin films showed a loading dependence. As the solution temperature raised from 20 oC to 60 oC, the hydrogen evolution performance of Ir-Ni thin films improved. The apparent activation energy value of Ir88Ni12 film was 7.1 kJ·mol-1. Long-term hydrogen evolution tests exhibited excellent electrocatalystic stability in alkaline solution.


2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Suzan Biran Ay ◽  
Nihan Kosku Perkgoz

Large-area catalytic thin films offer great potential for green technology applications in order to save energy, combat pollution, and reduce global warming. These films, either embedded with nanoparticles, shaped with nanostructuring techniques, hybridized with other systems, or functionalized with bionanotechnological methods, can include many different surface properties including photocatalytic, antifouling, abrasion resistant and mechanically resistive, self-cleaning, antibacterial, hydrophobic, and oleophobic features. Thus, surface functionalization with such advanced structuring methods is of significance to increase the performance and wide usage of large-area thin film coatings specifically for environmental remediation. In this review, we focus on methods to increase the efficiency of catalytic reactions in thin film and hence improve the performance in relevant applications while eliminating high cost with the purpose of widespread usage. However, we also include the most recent hybrid architectures, which have potential to make a transformational change in surface applications as soon as high quality and large area production techniques are available. Hence, we present and discuss research studies regarding both organic and inorganic methods that are used to structure thin films that have potential for large-area and eco-friendly coatings.


Author(s):  
Dinesh Pathak ◽  
Sanjay Kumar ◽  
Sonali Andotra ◽  
Jibin Thomas ◽  
Navneet Kaur ◽  
...  

In this study, we have investigated new tailored organic semiconductors materials for the optoelectronic application, such as organic solar cells. The carbon-based organic semiconductor material has promising advantages in organic thin-film form. Moreover, due to its low cost, organic thin-films are suitable and cheaper than inorganic thin-film. The band gap of organic semiconductors materials can be tuned and mostly lies between 2.0eV to 4eV and the optical absorption edge of organic semiconductors typically lies in between 1.7eV to 3eV. They can be easily tailored by modifying the carbon chain and legends and looks promising for engineering the band gap to harness solar spectrum. In this work, with new tailored organic semiconductors the solution route is explored which is low cost processing method. (Anthracen-9-yl) methylene naphthalene-1-amine, 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one and N-(anthracen-9-ylmethyl)-3,4-dimethoxyaniline thin-films are processed by spin coating method with changing concentration such as 0.05 wt% and 0.08 wt%. Thin films of Organic semiconductors were prepared on glass substrate and annealed at 55°C. The structural and optical behaviour of (Anthracen-9-yl) methylene naphthalene-1-amine, 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one and N-(anthracen-9-ylmethyl)-3,4-dimethoxyaniline organic semiconductors thin films is studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and UV-Visible Spectroscopy technique. The XRD data of synthesized sample suggests the Nano crystallinity of the Organic layers. The SEM micrographs shows the dense packing when we increase the wt% 0.05 to 0.08. Analysis of the optical absorption measurements found that the engineered band gap of synthesized thin films are 2.18eV, 2.35eV, 2.36eV, 2.52eV and 2.65eV which suggest suitability for applications of Optoelectronic devices such as solar cell. Such light weight, eco-friendly and disposable new carbon based materials seems to have potential to replace other traditional hazardous heavy materials for future eco-friendly flat fast electronics. Keywords: Thin-film, solar cell, tailored organic semiconductors, XRD, SEM, UV-Vis spectroscopy.


2020 ◽  
Vol 230 ◽  
pp. 00006
Author(s):  
Paola Lova ◽  
Paolo Giusto ◽  
Francesco Di Stasio ◽  
Giovanni Manfredi ◽  
Giuseppe M. Paternò ◽  
...  

Thanks to versatile optoelectronic properties solution processable perovskites have attracted increasing interest as active materials in photovoltaic and light emitting devices. However, the deposition of perovskite thin films necessitates wide range solvents that are incompatible with many other solution-processable media, including polymers that are usually dissolved by the perovskite solvents. In this work, we demonstrate that hybrid perovskite thin films can be coupled with all polymer planar photonic crystals with different approaches to achieve emission intensity enhancement and reshaping using different approaches. The possibility to control and modify the emission spectrum of a solution processable perovskite via a simple spun-cast polymer structure is indeed of great interest in optoelectronic applications requiring high color purity or emission directionality. Furthermore, thanks to the ease of fabrication and scalability of solution-processed photonic crystals, this approach could enable industrial scale production of low-cost, large area, lightweight and flexible polymer-perovskite lighting devices, which may be tuned without resorting to compositional engineering.


Sign in / Sign up

Export Citation Format

Share Document