scholarly journals Programmatic introduction of parenchymal cell types into blood vessel organoids

Author(s):  
Amir Dailamy ◽  
Udit Parekh ◽  
Dhruva Katrekar ◽  
Aditya Kumar ◽  
Daniella McDonald ◽  
...  
2000 ◽  
Vol 278 (1) ◽  
pp. H106-H116 ◽  
Author(s):  
Rafael Rubio ◽  
Guillermo Ceballos

Coronary flow regulates cardiac functions, and it has been suggested that endothelial membrane glycosylated proteins are the primary shear stress mechanosensors. Our hypothesis was that if these proteins are the sensors for flow, then intracoronary perfusion of lectins or specific antibodies should differentially depress coronary flow-enhanced responses of different parenchymal cell types such as auricular-ventricular (A-V) nodal cells (dromotropic effect), contractile myocytes (inotropic effect), and junctional Purkinje-muscle cells (spontaneous ventricular rhythm). The coronary flow stimulatory effects on A-V delay and spontaneous ventricular rhythm were selectively depressed by six of eight lectins. None of the lectins depressed the coronary flow inotropic effect. Antibodies against endothelial surface proteins, αvβ5-integrin and sialyl-Lewisb glycan, depressed the dromotropic but not the inotropic effects of coronary flow, whereas the vascular cell adhesion molecule 1 antibody had no effect on the dromotropic, but enhanced the inotropic, effect. The fact that lectins and antibodies differentially depressed regional coronary flow effects suggests that there is a chemical distinctiveness in their intravascular endothelial cell surfaces. However, nonselective cross-linking of endothelial glycocalyx proteins with 2,000-kDa dextran-aldehyde or vitronectin indistinctively depressed the dromotropic and inotropic effects of coronary flow. These results indicate that coronary flow-induced stress acts on specific structures located in the capillary intravascular membrane glycocalyx.


2021 ◽  
Author(s):  
Tallulah S Andrews ◽  
Jawairia Atif ◽  
Jeff C Liu ◽  
Catia T Perciani ◽  
Xue-Zhong Ma ◽  
...  

The critical functions of the human liver are coordinated through the interactions of hepatic parenchymal and non-parenchymal cells. Recent advances in single cell transcriptional approaches have enabled an examination of the human liver with unprecedented resolution. However, dissociation related cell perturbation can limit the ability to fully capture the human liver's parenchymal cell fraction, which limits the ability to comprehensively profile this organ. Here, we report the transcriptional landscape of 73,295 cells from the human liver using matched single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq). The addition of snRNA-seq enabled the characterization of interzonal hepatocytes at single-cell resolution, revealed the presence of rare subtypes of hepatic stellate cells previously only seen in disease, and detection of cholangiocyte progenitors that had only been observed during in vitro differentiation experiments. However, T and B lymphocytes and NK cells were only distinguishable using scRNA-seq, highlighting the importance of applying both technologies to obtain a complete map of tissue-resident cell-types. We validated the distinct spatial distribution of the hepatocyte, cholangiocyte and stellate cell populations by an independent spatial transcriptomics dataset and immunohistochemistry. Our study provides a systematic comparison of the transcriptomes captured by scRNA-seq and snRNA-seq and delivers a high-resolution map of the parenchymal cell populations in the healthy human liver.


2001 ◽  
Vol 3 (2) ◽  
pp. 125-142
Author(s):  
R. P. Church ◽  
C. M. Langton

Both long and irregular bones tend to form via endochondral ossification and are referred to as cartilage bones. Based upon the hypothesis that bone grows and forms as a semi-deterministic/semi-chaotic system, it should be possible to accurately model the osteogenesis of cartilage bones using a stochastic simulation. A thorough review of the literature has been undertaken enabling the cell types and tissues to be identified and a set of simulation rules to be established. The operation of the simulation has been evaluated longitudinally, reporting bone and blood vessel structures as the simulation develops to completion with fusion of the epiphyses; the simulation variability has been assessed by repeat runs using the same default conditions; and the effect of independently modifying key simulation parameters has been studied. This is thought to be the first report of a stochastic simulation of cartilage bone osteogenesis. The developed structures accurately follow the growth and form of irregular cartilage bones such as the vertebrae or calcaneus. The future of the simulation is now dependent primarily upon its potential utility in the field of bone metabolism and disease.


Games ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Li You ◽  
Maximilian Knobloch ◽  
Teresa Lopez ◽  
Vanessa Peschen ◽  
Sidney Radcliffe ◽  
...  

For cancer, we develop a 2-D agent-based continuous-space game-theoretical model that considers cancer cells’ proximity to a blood vessel. Based on castrate resistant metastatic prostate cancer (mCRPC), the model considers the density and frequency (eco-evolutionary) dynamics of three cancer cell types: those that require exogenous testosterone ( T + ), those producing testosterone ( T P ), and those independent of testosterone ( T - ). We model proximity to a blood vessel by imagining four zones around the vessel. Zone 0 is the blood vessel. As rings, zones 1–3 are successively farther from the blood vessel and have successively lower carrying capacities. Zone 4 represents the space too far from the blood vessel and too poor in nutrients for cancer cell proliferation. Within the other three zones that are closer to the blood vessel, the cells’ proliferation probabilities are determined by zone-specific payoff matrices. We analyzed how zone width, dispersal, interactions across zone boundaries, and blood vessel dynamics influence the eco-evolutionary dynamics of cell types within zones and across the entire cancer cell population. At equilibrium, zone 3’s composition deviates from its evolutionary stable strategy (ESS) towards that of zone 2. Zone 2 sees deviations from its ESS because of dispersal from zones 1 and 3; however, its composition begins to resemble zone 1’s more so than zone 3’s. Frequency-dependent interactions between cells across zone boundaries have little effect on zone 2’s and zone 3’s composition but have decisive effects on zone 1. The composition of zone 1 diverges dramatically from both its own ESS, but also that of zone 2. That is because T + cells (highest frequency in zone 1) benefit from interacting with T P cells (highest frequency in zone 2). Zone 1 T + cells interacting with cells in zone 2 experience a higher likelihood of encountering a T P cell than when restricted to their own zone. As expected, increasing the width of zones decreases these impacts of cross-boundary dispersal and interactions. Increasing zone widths increases the persistence likelihood of the cancer subpopulation in the face of blood vessel dynamics, where the vessel may die or become occluded resulting in the “birth” of another blood vessel elsewhere in the space. With small zone widths, the cancer cell subpopulations cannot persist. With large zone widths, blood vessel dynamics create cancer cell subpopulations that resemble the ESS of zone 3 as the larger area of zone 3 and its contribution to cells within the necrotic zone 4 mean that zones 3 and 4 provide the likeliest colonizers for the new blood vessel. In conclusion, our model provides an alternative modeling approach for considering density-dependent, frequency-dependent, and dispersal dynamics into cancer models with spatial gradients around blood vessels. Additionally, our model can consider the occurrence of circulating tumor cells (cells that disperse into the blood vessel from zone 1) and the presence of live cancer cells within the necrotic regions of a tumor.


2015 ◽  
Vol 112 (19) ◽  
pp. 6086-6091 ◽  
Author(s):  
Sophie Wiszniak ◽  
Francesca E. Mackenzie ◽  
Peter Anderson ◽  
Samuela Kabbara ◽  
Christiana Ruhrberg ◽  
...  

Jaw morphogenesis depends on the growth of Meckel’s cartilage during embryogenesis. However, the cell types and signals that promote chondrocyte proliferation for Meckel’s cartilage growth are poorly defined. Here we show that neural crest cells (NCCs) and their derivatives provide an essential source of the vascular endothelial growth factor (VEGF) to enhance jaw vascularization and stabilize the major mandibular artery. We further show in two independent mouse models that blood vessels promote Meckel’s cartilage extension. Coculture experiments of arterial tissue with NCCs or chondrocytes demonstrated that NCC-derived VEGF promotes blood vessel growth and that blood vessels secrete factors to instruct chondrocyte proliferation. Computed tomography and X-ray scans of patients with hemifacial microsomia also showed that jaw hypoplasia correlates with mandibular artery dysgenesis. We conclude that cranial NCCs and their derivatives provide an essential source of VEGF to support blood vessel growth in the developing jaw, which in turn is essential for normal chondrocyte proliferation, and therefore jaw extension.


2011 ◽  
Vol 59 (12) ◽  
pp. 1060-1075 ◽  
Author(s):  
J. Humberto Treviño-Villarreal ◽  
Douglas A. Cotanche ◽  
Rosalinda Sepúlveda ◽  
Magda E. Bortoni ◽  
Otto Manneberg ◽  
...  

Identification of cell types in tumor-associated stroma that are involved in the development of melanoma is hampered by their heterogeneity. The authors used flow cytometry and immunohistochemistry to demonstrate that anti–MART-1 antibodies can discriminate between melanoma and stroma cells. They investigated the cellular composition of the MART-1−, non-hematopoietic melanoma-associated stroma, finding it consisted mainly of Sca-1+ and CD146+ cells. These cell types were also observed in the skin and muscle adjacent to developing melanomas. The Sca-1+ cell population was observed distributed in the epidermis, hair follicle bulges, and tumor capsule. The CD146+ population was found distributed within the tumor, mainly associated with blood vessels in a perivascular location. In addition to a perivascular distribution, CD146+ cells expressed α-smooth muscle actin, lacked expression of endothelial markers CD31 and CD34, and were therefore identified as pericytes. Pericytes were found to be associated with CD31+ endothelial cells; however, some pericytes were also observed associated with CD31−, MART-1+ B16 melanoma cells that appeared to form blood vessel structures. Furthermore, the authors observed extensive nuclear expression of HIF-1α in melanoma and stroma cells, suggesting hypoxia is an important factor associated with the melanoma microenvironment and vascularization. The results suggest that pericytes and Sca-1+ stroma cells are important contributors to melanoma development.


1973 ◽  
Vol 21 (2) ◽  
pp. 131-141 ◽  
Author(s):  
ARTHUR R. HAND

Peroxisomes were identified in all three parenchymal cell types of the rat parotid gland. They averaged 0.33 µ in diameter in the acinar and intercalated duct cells, and 0.22 µ in the striated duct cells. They were closely related to the endoplasmic reticulum, occasionally in continuity with smooth surfaced cisternae and often embraced by ribosome-free portions of endoplasmic reticulum which paralleled their membrane. Glutaraldehyde fixation inhibited the endogenous peroxidase of the parotid gland and allowed visualization of the peroxisomes following incubation in alkaline diaminobenzidine medium. Peroxisomal staining was unaffected by varying H2O2 concentrations or low concentrations of KCN, but was prevented by aminotriazole and dichlorophenolindophenol. Examination of other exocrine glands after incubation in diaminobenzidine medium revealed the presence of peroxisomes in the pancreas, submandibular, lacrimal, nasal mucosal and von Ebner's glands. These studies indicate that peroxisomes are of widespread occurrence in exocrine tissues of the rat.


Author(s):  
Arsheen M. Rajan ◽  
Roger C. Ma ◽  
Katrinka M. Kocha ◽  
Dan J. Zhang ◽  
Peng Huang

ABSTRACTBlood vessels are vital to sustain life in all vertebrates. While it is known that mural cells (pericytes and smooth muscle cells) regulate vascular integrity, the contribution of other cell types to vascular stabilization has been largely unexplored. Using zebrafish, we identified sclerotome-derived perivascular fibroblasts as a novel population of blood vessel associated cells. In contrast to pericytes, perivascular fibroblasts emerge early during development, express the extracellular matrix (ECM) genes col1a2 and col5a1, and display distinct morphology and distribution. Time-lapse imaging reveals that perivascular fibroblasts serve as pericyte precursors. Genetic ablation of perivascular fibroblasts results in dysmorphic blood vessels with variable diameters. Strikingly, col5a1 mutants show spontaneous hemorrhage, and the penetrance of the phenotype is strongly enhanced by the additional loss of col1a2. Together, our work reveals dual roles of perivascular fibroblasts in vascular stabilization where they establish the ECM around nascent vessels and function as pericyte progenitors.AUTHOR SUMMARYBlood vessels are essential to sustain life in humans. Defects in blood vessels can lead to serious diseases, such as hemorrhage, tissue ischemia, and stroke. However, how blood vessel stability is maintained by surrounding support cells is still poorly understood. Using the zebrafish model, we identify a new population of blood vessel associated cells termed perivascular fibroblasts, which originate from the sclerotome, an embryonic structure that is previously known to generate the skeleton of the animal. Perivascular fibroblasts are distinct from pericytes, a known population of blood vessel support cells. They become associated with blood vessels much earlier than pericytes and express several collagen genes, encoding main components of the extracellular matrix. Loss of perivascular fibroblasts or mutations in collagen genes result in fragile blood vessels prone to damage. Using cell tracing in live animals, we find that a subset of perivascular fibroblasts can differentiate into pericytes. Together, our work shows that perivascular fibroblasts play two important roles in maintaining blood vessel integrity. Perivascular fibroblasts secrete collagens to stabilize newly formed blood vessels and a sub-population of these cells also functions as precursors to generate pericytes to provide additional vascular support.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2036
Author(s):  
Yujin Ahn ◽  
Ju-Hyun An ◽  
Hae-Jun Yang ◽  
Dong Gil Lee ◽  
Jieun Kim ◽  
...  

Vascularization of tissues, organoids and organ-on-chip models has been attempted using endothelial cells. However, the cultured endothelial cells lack the capacity to interact with other somatic cell types, which is distinct from developing vascular cells in vivo. Recently, it was demonstrated that blood vessel organoids (BVOs) recreate the structure and functions of developing human blood vessels. However, the tissue-specific adaptability of BVOs had not been assessed in somatic tissues. Herein, we investigated whether BVOs infiltrate human cerebral organoids and form a blood–brain barrier. As a result, vascular cells arising from BVOs penetrated the cerebral organoids and developed a vessel-like architecture composed of CD31+ endothelial tubes coated with SMA+ or PDGFR+ mural cells. Molecular markers of the blood-brain barrier were detected in the vascularized cerebral organoids. We revealed that BVOs can form neural-specific blood-vessel networks that can be maintained for over 50 days.


Author(s):  
A. S. Chan

Although the ultimobranchial gland of the chick has been shown to contain large amounts of calcitonin relatively few reports have been published on its fine structure. In the present study, the ultrastructure of the chick ultimobranchial gland, with emphasis on the cells which appear to be the producers of the hormone, will be examined. Ultimobranchial glands were obtained from twenty 2-week-old chicks and fixed in glutaraldehyde followed by osmium tetroxide.The gland is composed of aggregate of cords and clusters of cells interspersed with variable numbers of cyst-like cavities. Two parenchymal cell types, namely, light and dark cells can be recognized (Figs. 1,2,3). Epithelial cells, varying from columnar to cuboidal, line the cavities of the cysts.Light cells form the majority of the cell types (Fig. 1). The cytoplasm is characterized by the presence of membrane-limited secretory granules, measuring from 100 to 350 mμ in diameter. The contents of the secretory granules vary in electron density from moderate to extreme (Figs. 1,2). Secretory granules are distributed randomly in the cytoplasm although some are lined near the cell membrane.


Sign in / Sign up

Export Citation Format

Share Document