Heterogeneous Low-carbon Targets and Energy Structure Optimization: Does Stricter Carbon Regulation Really Matter?

Author(s):  
Zhenbing Yang ◽  
Qingquan Shi ◽  
Xiangqiu Lv ◽  
Qi Shi
Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 624 ◽  
Author(s):  
Zeng Li ◽  
Jingying Fu ◽  
Gang Lin ◽  
Dong Jiang ◽  
Kun Liu ◽  
...  

In view of the complexity of the energy system and its complex relationship with socio-economic factors, this study adopts the Long-range Energy Alternative Planning (LEAP) model, a technology-based, bottom-up approach, scenario-based analysis, to develop a systematic analysis of the current and future energy consumption, supply and associated Green House Gas (GHG) emissions from 2015 to 2050. The impact of various energy policies on the energy system in Hebei Province was analysed by considering four scenarios: a Reference Scenario (REF), Industrial Structure Optimization Scenario (ISO), Terminal Consumption Structure Optimization Scenario (TOS) and Low-carbon Development Scenario (LCD). By designing strategic policies from the perspective of industrial adjustment, aggressive energy structure policies and measures, such as the ISO and the TOS, and even more aggressive options, such as the LCD, where the percentage of cleaner alternative energy sources has been further increased, it has been indicated that energy consumption will have increased from 321.618 million tonnes of coal equivalent (Mtce) in 2015 to 784.88 Mtce in 2050 in the REF, with a corresponding increase in GHG emissions from 920.56 million metric tonnes (Mt) to 2262.81 Mt. In contrast, the more aggressive policies and strategies involved in the LCD, which combines the ISO with the policy-oriented TOS, can lower energy consumption by 50.82% and CO2 emissions by 64.26%. The results shed light on whether and how these scenarios can shape the energy-carbon emission reduction trajectories and develop the low-carbon pathways in Hebei Province.


2012 ◽  
Vol 616-618 ◽  
pp. 1484-1489 ◽  
Author(s):  
Xu Shan ◽  
Hua Wang Shao

The coordination development of economy-energy-environment was discussed with traditional environmental loads model, combined with "decoupling" theory. Considering the possibilities of social and economic development, this paper set out three scenarios, and analyzed quantitatively the indexes, which affected carbon dioxide emissions, including population, per capita GDP, industrial structure and energy structure. Based on this, it forecasted carbon dioxide emissions in China in future. By comparing the prediction results, it held that policy scenario was the more realistic scenario, what’s more it can achieve emission reduction targets with the premise of meeting the social and economic development goals. At last, it put forward suggestions to implement successfully policy scenario, from energy structure, industrial structure, low-carbon technology and so on.


2012 ◽  
Vol 573-574 ◽  
pp. 821-825
Author(s):  
Hui Qin Zhao ◽  
Hong Wang

Low carbon economy makes effect on employment. It shows that low carbon is not only a kind of life philosophy. With the development of new energy technology, it has risen to national economic strategy, and may become a new economic growth point. At the same time, the adjustment of energy structure, not only benefits to the sustainable development road of economic development to" green" , and also brings in new hope for improving the current employment situation. The employment situation of college graduates is an important index of social inspection and evaluation of the quality of running a school; it is one of the core competitiveness of schools. Graduate employment status relates to the school reputation directly. This paper studies that how colleges and universities do the employment work of graduates.


2012 ◽  
Vol 599 ◽  
pp. 211-215
Author(s):  
Lun Wang ◽  
Zhao Sun ◽  
Jing Ya Wen ◽  
Zhuang Li ◽  
Wen Jin Zhao ◽  
...  

This paper developed an optimal model of low-carbon urban agglomeration on the base of energy structure under uncertainty. The case study shows that the carbon intensity was decreased by [32.19, 41.20] (%) and energy intensity was reduced by [34.08, 43.19] (%) compared with those in 2010; meanwhile, the carbon intensity and energy intensity in the core area was reduced by [50.88, 54.11] (%) and [51.24, 54.57] (%) respectively, compared with those in 2010. The optimized scheme could not only meet the requirements of 12th Five-Year Planning Outline of Controlling Greenhouse Gas Emission, but also complied with the requirements of regional planning targets. The established model also provided more decision-making space for the sustainable development of low-carbon urban agglomeration.


Author(s):  
Huiqing Wang ◽  
Yixin Hu ◽  
Heran Zheng ◽  
Yuli Shan ◽  
Song Qing ◽  
...  

The rise of global value chains (GCVs) has seen the transfer of carbon emissions embodied in every step of international trade. Building a coordinated, inclusive and green GCV can be an effective and efficient way to achieve carbon emissions mitigation targets for countries that participate highly in GCVs. In this paper, we first describe the energy consumption as well as the territorial and consumption-based carbon emissions of Belarus and its regions from 2010 to 2017. The results show that Belarus has a relatively clean energy structure with 75% of Belarus' energy consumption coming from imported natural gas. The ‘chemical, rubber and plastic products' sector has expanded significantly over the past few years; its territorial-based emissions increased 10-fold from 2011 to 2014, with the ‘food processing' sector displaying the largest increase in consumption-based emissions. An analysis of regional emissions accounts shows that there is significant regional heterogeneity in Belarus with Mogilev, Gomel and Vitebsk having more energy-intensive manufacturing industries. We then analysed the changes in Belarus' international trade as well as its emission impacts. The results show that Belarus has changed from a net carbon exporter in 2011 to a net carbon importer in 2014. Countries along the Belt and Road Initiative, such as Russia, China, Ukraine, Poland and Kazakhstan, are the main trading partners and carbon emission importers/exporters for Belarus. ‘Construction’ and ‘chemical, rubber and plastic products' are two major emission-importing sectors in Belarus, while ‘electricity' and ‘ferrous metals' are the primary emission-exporting sectors. Possible low-carbon development pathways are discussed for Belarus through the perspectives of global supply and the value chain.


2021 ◽  
Author(s):  
Xiping Wang ◽  
Sujing Wang

Abstract As an effective tool of carbon emission reduction, emission trading has been widely used in many countries. Since 2013, China implemented carbon emission trading in seven provinces and cities, with iron and steel industry included in the first batch of pilot industries. This study attempts to explore the policy effect of emission trading on iron and steel industry in order to provide data and theoretical support for the low-carbon development of iron and steel industry as well as the optimization of carbon market. With panel data of China’s 29 provinces from 2006 to 2017, this study adopted a DEA-SBM model to measure carbon emission efficiency of China’s iron and steel industry (CEI) and a difference-in-differences (DID) method to explore the impact of emission trading on CEI. Moreover, regional heterogeneity and influencing mechanisms were further investigated, respectively. The results indicate that: (1) China's emission trading has a significant and sustained effect on carbon abatement of iron and steel industry, increasing the annual average CEI by 12.6% in pilot provinces. (2) The policy effects are heterogeneous across diverse regions. Higher impacts are found in the western and eastern regions, whereas the central region is not significant. (3) Emission trading improves CEI by stimulating technology innovation, reducing energy intensity, and adjusting energy structure. (4) Economic level and industrial structure are negatively related to CEI, while environmental governance and openness degree have no obvious impacts. Finally, according to the results and conclusions, some specific suggestions are proposed.


2020 ◽  
Vol 12 (4) ◽  
pp. 1428 ◽  
Author(s):  
Na Lu ◽  
Shuyi Feng ◽  
Ziming Liu ◽  
Weidong Wang ◽  
Hualiang Lu ◽  
...  

As the largest carbon emitter in the world, China is confronted with great challenges of mitigating carbon emissions, especially from its construction industry. Yet, the understanding of carbon emissions in the construction industry remains limited. As one of the first few attempts, this paper contributes to the literature by identifying the determinants of carbon emissions in the Chinese construction industry from the perspective of spatial spillover effects. A panel dataset of 30 provinces or municipalities from 2005 to 2015 was used for the analysis. We found that there is a significant and positive spatial autocorrelation of carbon emissions. The local Moran’s I showed local agglomeration characteristics of H-H (high-high) and L-L (low-low). The indicators of population density, economic growth, energy structure, and industrial structure had either direct or indirect effects on carbon emissions. In particular, we found that low-carbon technology innovation significantly reduces carbon emissions, both in local and neighboring regions. We also found that the industry agglomeration significantly increases carbon emissions in the local regions. Our results imply that the Chinese government can reduce carbon emissions by encouraging low-carbon technology innovations. Meanwhile, our results also highlight the negative environmental impacts of the current policies to promote industry agglomeration.


2019 ◽  
pp. 014459871989582
Author(s):  
Yanguang Liu ◽  
Guiling Wang ◽  
Xi Zhu ◽  
Tingxin Li

Under the background of China’s energy structure optimization, environmental protection, energy conservation, and rising pressure of emission reduction, geothermal, as a potential strategic replacement energy, has ushered in new opportunities and challenges. This paper systematically summarizes the domestic achievements in the exploration and development of geothermal resources, analyzes the endowment, distribution, and accumulation mechanism of geothermal resources in China, and points out the main problems existing in the exploration and development of geothermal resources in China. On this basis, it looks forward to China’s urgent geothermal exploration and development work and key technologies to be urgently developed, providing important guidance for China’s geothermal science and technology innovation and rapid industrialization development.


Sign in / Sign up

Export Citation Format

Share Document