Study of electroless Sn-coated Cu microparticles and their application as a high temperature thermal interface material

2017 ◽  
Vol 319 ◽  
pp. 230-240 ◽  
Author(s):  
Tianqi Hu ◽  
Hongtao Chen ◽  
Chunqing Wang ◽  
Mengshi Huang ◽  
Fufan Zhao
Author(s):  
Y. Zhao ◽  
D. Strauss ◽  
Y. C. Chen ◽  
T. Liao ◽  
C. L. Chen

Thermal interface materials (TIMs) play a critical role in microelectronics packaging. In this paper, a novel aligned-graphite/solder TIM is described. Unlike traditional TIMs infiltrated with randomly-oriented high-conductivity fillers, the aligned-graphite/solder TIMs provide both extraordinarily high thermal conductivity along the heat transport direction, and controllable stiffness to conform to surfaces with different roughness and hardness, greatly improving the overall heat transfer performance. In addition, vertically connected solder layers can lock the graphite layers in place and reinforce the strength of the entire package. Thermal performance of the graphite TIMs was determined experimentally based on the ASTM-D5470 method with comparison to two commercially available TIMs. The graphite TIMs also experienced a thermal cycling test and a high temperature stability test to establish its performance merit in practical applications. Experiments showed that the overall thermal resistivity of a 150-to-200-μm-thick graphite TIM film was less than 0.035 °C/(W/cm2) when bonding two smooth copper surfaces together at a processing pressure of 30 psi, which corresponds to an approximately 2–3X improvement over a Ag-Sn solder alloy (Indalloy 121). Preliminary thermal cycling and high temperature stability tests showed that the thermal performance of the graphite TIM was very stable, and did not degrade during these tests. The tests also indicated that the presence of surface roughness of 10 μm on one of the copper surfaces reduced the overall thermal resistivity by approximately 30%. A numerical simulation verified this trend.


2021 ◽  
Author(s):  
Shaojia Deng ◽  
Xin Zhang ◽  
Guowei David Xiao ◽  
Kai Zhang ◽  
Xiaowu He ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1699
Author(s):  
Sriharsha Sudhindra ◽  
Fariborz Kargar ◽  
Alexander A. Balandin

We report on experimental investigation of thermal contact resistance, RC, of the noncuring graphene thermal interface materials with the surfaces characterized by different degree of roughness, Sq. It is found that the thermal contact resistance depends on the graphene loading, ξ, non-monotonically, achieving its minimum at the loading fraction of ξ ~15 wt %. Decreasing the surface roughness by Sq~1 μm results in approximately the factor of ×2 decrease in the thermal contact resistance for this graphene loading. The obtained dependences of the thermal conductivity, KTIM, thermal contact resistance, RC, and the total thermal resistance of the thermal interface material layer on ξ and Sq can be utilized for optimization of the loading fraction of graphene for specific materials and roughness of the connecting surfaces. Our results are important for the thermal management of high-power-density electronics implemented with diamond and other wide-band-gap semiconductors.


2014 ◽  
Vol 49 (22) ◽  
pp. 7844-7854 ◽  
Author(s):  
J. Liu ◽  
U. Sahaym ◽  
I. Dutta ◽  
R. Raj ◽  
M. Renavikar ◽  
...  

2021 ◽  
pp. 002199832110595
Author(s):  
Weontae Oh ◽  
Jong-Seong Bae ◽  
Hyoung-Seok Moon

The microstructural change of graphite was studied after ultrasonic treatment of the graphite. When the graphite solution was treated with varying ultrasonic power and time, the microstructure changed gradually, and accordingly, the thermal conductivity characteristics of the composite containing the as-treated graphite was also different with each other. Thermal conductivity showed the best result in the silicone composite containing graphite prepared under the optimum condition of ultrasonic treatment, and the thermal conductivity of the composite improved proportionally along with the particle size of graphite. When the silicone composite was prepared by using a mixture of inorganic oxides and graphite rather than graphite alone, the thermal conductivity of the silicone composite was further increased. A silicone composite containing graphite was used for LED (light emitting diode) lighting system as a thermal interface material (TIM), and the temperature elevation due to heat generated, while the lighting was actually operated, was analyzed.


Author(s):  
Amer M. Hamdan ◽  
Aric R. McLanahan ◽  
Robert F. Richards ◽  
Cecilia D. Richards

This work presents the characterization of a thermal interface material consisting of an array of mercury micro droplets deposited on a silicon die. Three arrays were tested, a 40 × 40 array (1600 grid) and two 20 × 20 arrays (400 grid). All arrays were assembled on a 4 × 4 mm2 silicon die. An experimental facility which measures the thermal resistance across the mercury array under steady state conditions is described. The thermal interface resistance of the arrays was characterized as a function of the applied load. A thermal interface resistance as low as 0.253 mm2 K W−1 was measured. A model to predict the thermal resistance of a liquid-metal micro droplet array was developed and compared to the experimental results. The model predicts the deformation of the droplet array under an applied load and then the geometry of the deformed droplets is used to predict the thermal resistance of the array. The contact resistance of the mercury arrays was estimated based on the experimental and model data. An average contact resistance was estimated to be 0.14 mm2 K W−1.


Sign in / Sign up

Export Citation Format

Share Document