Historical earthquakes and variable kinematic behaviour of the 2009 L'Aquila seismic event (central Italy) causative fault, revealed by paleoseismological investigations

2013 ◽  
Vol 583 ◽  
pp. 131-144 ◽  
Author(s):  
M. Moro ◽  
S. Gori ◽  
E. Falcucci ◽  
M. Saroli ◽  
F. Galadini ◽  
...  
2020 ◽  
Author(s):  
Ersilia Giordano ◽  
Angela Ferrante ◽  
Elisa Ribilotta ◽  
Francesco Clementi ◽  
Stefano Lenci

1995 ◽  
Vol 38 (5-6) ◽  
Author(s):  
G. D'Addezio ◽  
F. R. Cinti ◽  
D. Pantosti

The combination of paleoseismological and historical investigation can be used to obtain a complete knowledge of past earthquakes. In Italy the 1000 year-long record of historical earthquakes provides an opportunity to compare data from the catalogue with results from paleoseismologic investigations. Trenching results along the Ovindoli-Pezza Fault (OPF). in the Abruzzi region. showed two surface faulting events. The most recent of these events occurred after 1019 A.D. and should be reported in the Catalogue of Italian Seismicity. Nevertheless, the earthquake appears to be missed or not well located in the Catalogue. In order to define in which century a large earthquake on the OPF should have clearly left a sign in the historical record, we carried out historical investigations back to the XI century. The studies were mainly focu5ed on disclosing possible <<negative>> e vidence for the occurrence of the most recent event along the OPF. No clear records related to this event were found but on the basis of the information we obtained the occurrence of this earthquake can be constrained between 1019 A.D. and the XV century. possibly between 1019 A.D. and XIII century.


2016 ◽  
Vol 59 ◽  
Author(s):  
Lorenzo Hofer ◽  
Mariano Angelo Zanini ◽  
Flora Faleschini

On August 24, 2016, a sudden MW 6.0 seismic event hit Central Italy, causing 298 victims and significant damage to residential buildings and cultural heritage. In the days following the mainshock, a macroseismic survey was conducted by teams of the University of Padova, according to the European Macroseismic Scale (EMS98). In this contribution, a critical analysis of the collected macroseismic data is presented and some comparisons were performed with the recent 2012 Emilia sequence.


2019 ◽  
Vol 817 ◽  
pp. 627-633
Author(s):  
Ersilia Giordano ◽  
Angela Ferrante ◽  
Elisa Ribilotta ◽  
Francesco Clementi ◽  
Stefano Lenci

Italy is a high seismic risk country since 1900 more than 30 earthquakes with magnitude greater than Mw=5.8 have occurred, and the last one is the Central Italy seismic sequence. The first shock occurred in the 24 August (Mw=6.2) followed by another stronger quake in the 30th October (Mw=6.5). It hit the regions of Marche, Umbria, and Abruzzo heavily causing many deaths, injuries and extensive damages on the cultural heritage. This paper analyses the church of San Francesco in Amadola, located in the Marche region that has been considered condemned for the severe damages reported after these earthquakes. The church is globally analyzed by the application of nonlinear static analysis on a Finite Element Model where the nonlinearity of masonry is taking into account with a proper constitutive law. The study wants to prove how global analysis combined by the local analysis can reproduce the behavior of this structure during a quake, showing that it can repeat the real damages produced by earthquakes.


2012 ◽  
Vol 28 (1) ◽  
pp. 159-183 ◽  
Author(s):  
Fausto Marincioni ◽  
Federica Appiotti ◽  
Maurizio Ferretti ◽  
Caterina Antinori ◽  
Paola Melonaro ◽  
...  

On Monday, 6 April 2009 at 3:32 a.m. (local time), a moment magnitude 6.3 earthquake with an epicenter located near the city of L'Aquila, in central Italy, killed 308 people, injured 1,500, left 22,000 homeless, and temporarily displaced another 65,000. This study examines a sample of the affected population and finds that despite the long list of historical earthquakes that struck the region and the swarm of foreshocks occurring up to four months before the main shock of 6 April, the residents of L'Aquila had a rather low earthquake risk perception and an unjustified confidence in the seismic safety of their houses. This low perception of earthquake risk and ignorance of the real structural resistance of buildings appear to have inhibited the individual and collective propensity to develop emergency plans. This situation was further exacerbated by the lack of clear and forthright communication from the emergency management authorities about the impossibility of precisely predicting earthquakes and about the risks posed by many of the city's old buildings.


2021 ◽  
Vol 64 (Vol. 64 (2021)) ◽  
Author(s):  
Luigi Cucci

The 8 September 1905 Calabria earthquake is the seismic event for which the Italian Seismic Catalogue shows the highest instrumental magnitude of the whole dataset. However, the reported Ms=7.47 was calculated over only two stations, and leaves room for a revision. In this work I provide a new estimate of the surface-wave magnitude of the earthquake calculated over sixteen individual values of magnitude from seven different stations. The new estimate is Ms=7.06±0.13, a value that is consistently lined up with other estimates provided by means of macroseismic or geological evidence. The novel estimate is stable despite alternative epicentral locations and different depths proposed for this event by several investigators. The net variation of almost half a unit magnitude implies a resizing of the seismogenic source of the event in the frame of the seismotectonics of the region, and highlights the strong need for a systematic revision of the instrumental magnitude estimates for several ‘historical’ earthquakes that occurred at the dawning of the instrumental seismology.


2021 ◽  
Author(s):  
Paolo Boncio ◽  
Eugenio Auciello ◽  
Vincenzo Amato ◽  
Pietro Aucelli ◽  
Paola Petrosino ◽  
...  

Abstract. We studied in detail the Gioia Sannitica active normal fault (GF) along the Southern Matese Fault system in the southern Apennines of Italy. The current activity of the fault system and its potential to produce strong earthquakes have been underestimated so far, and are now defined. Precise mapping of the GF fault trace on a 1 : 20,000 geological map and several point data on geometry, kinematics and throw rate are made available in electronic format. The GF, and in general the entire fault system along the southern Matese mountain front, is made of slowly-slipping faults, with a long active history revealed by the large geologic offsets, mature geomorphology, and complex fault pattern and kinematics. Present activity has resulted in Late Quaternary fault scarps resurrecting the foot of the mountain front, and Holocene surface faulting. The slip rate varies along-strike, with maximum Late Pleistocene – Holocene throw rate of ~0.5 mm/yr. Activation of the 11.5 km-long GF can produce up to M 6.1 earthquakes. If activated together with the 18 km-long Ailano-Piedimonte Matese fault (APMF), the seismogenic potential would be M 6.8. The slip history of the two faults is compatible with a contemporaneous rupture. The observed Holocene displacements on the GF and APMF are compatible with activations during some poorly known historical earthquakes, such as the 1293 (M 5.8), 1349 (M 6.8; southern prolongation of the rupture on the Aquae Iuliae fault?) and CE 346 earthquakes. A fault rupture during the 847 poorly-constrained historical earthquake is also compatible with the dated displacements.


2017 ◽  
Vol 59 ◽  
Author(s):  
Maurizio Pignone ◽  
Concetta Nostro ◽  
Alessandro Amato ◽  
Carlo Meletti

<p class="Normale1"><em>In this paper, we describe the role the INGVterremoti blog in information management during the first part of the earthquake sequence in central Italy (August 24 to September 30). In the last four years, we have been working on the INGVterremoti blog in order to provide quick updates on the ongoing seismic activity in Italy and in-depth scientific information. These include articles on specific historical earthquakes, seismic hazard, geological interpretations, source models from different type of data, effects at the surface, and so on.</em></p><p class="Normale1"><em>We have delivered information in quasi-real-time also about all the recent magnitude M≥4.0 earthquakes in Italy, the strongest events in the Mediterranean and in the world.</em></p><p class="Normale1"><em>During the 2016 central Italy, the INGVterremoti blog has continuously released information about seismic sequences with three types of posts: i) updates on the ongoing seismic activity; ii) reports on the activities carried out by the INGV teams in the field and any other working groups; iii) in-depth scientific articles describing some specific analysis and results.</em></p><p class="Normale1"><em>All the blog posts have been shared automatically and in real time on the other social media of the INGVterremoti platform, also to counter the bad information and to fight rumors. These include Facebook, Twitter and INGVterremoti App on IOS and Android. As well, both the main INGV home page (http://www.ingv.it) and the INGV earthquake portal (<span style="text-decoration: underline;">http://terremoti.ingv.it</span>) have published the contents of the blog on dedicated pages that were fed automatically. The work done day by day on the INGVterremoti blog has been coordinated with the INGV Press Office that has written several press releases based on the contents of the blog.</em></p><p class="Normale1"><em></em><em>Since August 24<sup>th</sup>, on the blog 53 articles were published on the blog  they have had more than 1.9 million views and 1 million visitors. The peak in the number of views, which was more than 800,000 in a single day, was registered on August 24, 2016, following the M 6.0 earthquake.</em></p>


1991 ◽  
Vol 193 (1-3) ◽  
pp. 95-107
Author(s):  
G. Monachesi ◽  
V. Castelli ◽  
N. Vasapollo

Geosciences ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 186 ◽  
Author(s):  
Francesco Brozzetti ◽  
Alessandro Cesare Mondini ◽  
Cristina Pauselli ◽  
Paolo Mancinelli ◽  
Daniele Cirillo ◽  
...  

The 2016 Central Italy seismic sequence was characterized by two main events: 24 August, Mw 6, and 30 October, Mw 6.5. We carried out high-resolution field sampling and DInSAR analysis of the coseismic and intra-sequence ground deformations along the Mt Vettore-Mt Bove causative fault (VBF). We found that during the intra-sequence period (24 August–30 October), the ground experienced some deformations whose final patterns seemed to be retraced and amplified by the following mainshock. We interpreted that (i) immediately after the 24 August earthquake, the deformation observed in the southern VBF expanded northwards and westwards over a Length of Deforming Ground (LDG) ranging between 28.7 and 36.3 km, and (ii) it extended to the whole portion of the hanging wall that was later affected by mainshock coseismic deformation. Assuming the LDG to be an indicator for an expected (=coseismic) surface rupture length and using known scaling functions, we obtained 6.4 ≤ Mw ≤ 6.7 for a possible incoming earthquake, which is consistent with the mainshock magnitude. We suggest that the evolution of the ground deformations after a significant seismic event might provide insights on the occurrence of new earthquakes with magnitudes comparable to or larger than the former.


Sign in / Sign up

Export Citation Format

Share Document