Analysis of total leakage of finger seal with side leakage flow

2020 ◽  
Vol 150 ◽  
pp. 106371 ◽  
Author(s):  
Hailin Zhao ◽  
Hua Su ◽  
Guoding Chen
Keyword(s):  
2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110371
Author(s):  
Zhenzhou Ju ◽  
Jinfang Teng ◽  
Yuchen Ma ◽  
Mingmin Zhu ◽  
Xiaoqing Qiang

This paper focuses on the effect of hub clearance in the design space of the highly loaded cantilevered stator. The embedded 1.5 stages of a low-speed research compressor (LSRC) were conducted with Unsteady Reynolds Average Navier-Stokes (URANS) numerical investigation, and the cantilevered stator adopts positive bowed and fore-sweep three-dimensional design. The research details that with the hub clearance increasing from 1.1% to 4.5% span, the loss coefficient and the total leakage momentum of the cantilevered stator correspond to the change of the blade loading near the hub. When designing the inlet metal angle of the rotor downstream the cantilevered stator, emphasis should be given to considering the inter-stage matching below 15% span. The mixing of leakage flow in 1.1% span clearance and 2.5% span clearance is basically completed in the S3 passage, but the mixing of leakage flow in 3.5% span clearance and 4.5% span clearance is still relatively strong downstream of S3. When calculating the relative entropy variation based on Denton’s mixing model, attention should be paid to the relationship between the leakage flow velocity affected by the hub gap and the mainstream velocity, as well as whether the mixing has been completed in the blade passage.


1969 ◽  
Vol 91 (4) ◽  
pp. 748-755 ◽  
Author(s):  
H. J. Sneck

It is shown analytically that face seal eccentricity combined with surface waviness can contribute an inward or outward leakage component to the total leakage flow depending on the phase angle between the eccentricity and the waviness.


Author(s):  
Maryam Alibeigi ◽  
Shahriar S. Moghaddam

Background & Objective: This paper considers a multi-pair wireless network, which communicates peer-to-peer using some multi-antenna amplify-and-forward relays. Maximizing the throughput supposing that the total relay nodes’ power consumption is constrained, is the main objective of this investigation. We prove that finding the beamforming matrix is not a convex problem. Methods: Therefore, by using a semidefinite relaxation technique we find a semidefinite programming problem. Moreover, we propose a novel algorithm for maximizing the total signal to the total leakage ratio. Numerical analyses show the effectiveness of the proposed algorithm which offers higher throughput compared to the existing total leakage minimization algorithm, with much less complexity. Results and Conclusion: Furthermore, the effect of different parameters such as, the number of relays, the number of antennas in each relay, the number of transmitter/receiver pairs and uplink and downlink channel gains are investigated.


2021 ◽  
Vol 774 (1) ◽  
pp. 012087
Author(s):  
S J Kim ◽  
Y S Choi ◽  
Y Cho ◽  
J W Choi ◽  
J J Hyun ◽  
...  

Author(s):  
Sehjin Park ◽  
Ho-Seong Sohn ◽  
Sangwoo Shin ◽  
Osamu Ueda ◽  
Hee Koo Moon ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4168
Author(s):  
Botao Zhang ◽  
Xiaochen Mao ◽  
Xiaoxiong Wu ◽  
Bo Liu

To explain the effect of tip leakage flow on the performance of an axial-flow transonic compressor, the compressors with different rotor tip clearances were studied numerically. The results show that as the rotor tip clearance increases, the leakage flow intensity is increased, the shock wave position is moved backward, and the interaction between the tip leakage vortex and shock wave is intensified, while that between the boundary layer and shock wave is weakened. Most of all, the stall mechanisms of the compressors with varying rotor tip clearances are different. The clearance leakage flow is the main cause of the rotating stall under large rotor tip clearance. However, the stall form for the compressor with half of the designed tip clearance is caused by the joint action of the rotor tip stall caused by the leakage flow spillage at the blade leading edge and the whole blade span stall caused by the separation of the boundary layer of the rotor and the stator passage. Within the investigated varied range, when the rotor tip clearance size is half of the design, the compressor performance is improved best, and the peak efficiency and stall margin are increased by 0.2% and 3.5%, respectively.


Author(s):  
Masaaki Arai ◽  
Masaaki Saito ◽  
Ichiro Minohata ◽  
Kiyohiro Tajima

2021 ◽  
Vol 11 (2) ◽  
pp. 780
Author(s):  
Dong Liang ◽  
Xingmin Gui ◽  
Donghai Jin

In order to investigate the effect of seal cavity leakage flow on a compressor’s performance and the interaction mechanism between the leakage flow and the main flow, a one-stage compressor with a cavity under the shrouded stator was numerically simulated using an inhouse circumferentially averaged through flow program. The leakage flow from the shrouded stator cavity was calculated simultaneously with main flow in an integrated manner. The results indicate that the seal cavity leakage flow has a significant impact on the overall performance of the compressor. For a leakage of 0.2% of incoming flow, the decrease in the total pressure ratio was 2% and the reduction of efficiency was 1.9 points. Spanwise distribution of the flow field variables of the shrouded stator shows that the leakage flow leads to an increased flow blockage near the hub, resulting in drop of stator performance, as well as a certain destructive effect on the flow field of the main passage.


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093046 ◽  
Author(s):  
Lei Shi ◽  
Keqiang Wang ◽  
Ding Feng ◽  
Hong Zhang ◽  
Peng Wang

Lubricant leakage will inevitably occur during the working process of wellbore trajectory control tools. Even including the lubricant compensation system, serious leakage will still cause lacks lubrication of the internal mechanical structure as well as electronic system damaged by external infiltration fluid, especially when it comes to battery sub and other electronic equipment. Seal system leakage prediction method was presented based on the assumption of steady gap flow. It is assumed that there is a constant gap between the lip seal and the rotating shaft, the gap height is determined by oil film thickness, and the length of the gap was determined by the contact analysis using the Mooney–Rivlin constitutive model. The analysis results show that the contact length between the primary seal lip and the rotary shaft is about 0.1 mm under the condition of ensuring the contact between the deputy seal lip and the rotary shaft. The overall lubricant leakage finite element analysis model was established, and the relationship between the internal lubricant pressure of the tool and the total leakage was obtained. The results of analysis indicate that under the internal pressure of 0.03 MPa, the lubricant leakage is approximately 6 mL/h, which was verified by experiments.


Sign in / Sign up

Export Citation Format

Share Document