In-vitro efficacy of a botanical acaricide and its active ingredients against larvae of susceptible and acaricide-resistant strains of Rhipicephalus (Boophilus) microplus Canestrini (Acari: Ixodidae)

2018 ◽  
Vol 9 (2) ◽  
pp. 201-206 ◽  
Author(s):  
Nirbhay K. Singh ◽  
Robert J. Miller ◽  
Guilherme M Klafke ◽  
John A. Goolsby ◽  
Donald B. Thomas ◽  
...  
1978 ◽  
Vol 31 (4) ◽  
pp. 317 ◽  
Author(s):  
CA Schuntner ◽  
PG Thompson

B. micro plus larvae of the organophosphorus-resistant Biarra and Mt Alford strains were respectively 8 x and 35 x resistant to bromophos-ethyl compared with larvae of the standard organophosphorussusceptible Yeerongpilly strain. Both resistant strains had acetylcholinesterase with decreased sensitivity to inhibition by the oxon of bromophos-ethyl in vitro; this was the only resistance mechanism apparent in the Biarra strain but Mt Alford larvae were protected additionally by increased metabolism of the oxon in vivo to water-soluble products. Total degradation rates for the parent chemical were similar in all strains and relatively slow. Both bromophos-ethyl and its oxon were potent inhibitors of mixed-function oxidase in vivo and it seemed that the slow oxidative metabolism of bromophos-ethyl (the major pathway) could be attributed to substrate and/or product inhibition. No phenolic metabolites were detected and the major water-soluble metabolite was identified electrophoretically as 2,5-dichlorophenyl-o-ethyl phosphate. Some debrominated oxon was detected in all samples of larvae after dosage with bromophos-ethyl or with its oxon, indicating that oxidation of bromophos-ethyl to the oxon, debromination of the oxon followed by deethylation was a major degradative sequence.


2021 ◽  
Vol 19 (suplemento) ◽  
Author(s):  
J Torrents

The aim of this study was to propose an alternative statistic treatment for the results obtained by testing the in vitro efficacy of ivermectin (IVM) against R. microplus using the larval immersion test in order to detect the emergence of resistant strains. The statistical analysis of the results obtained by this technique is standardized by the FAO who proposes the use of the Probit model. However there are alternative mathematical models that allow a more precise analysis of experimental data generating more information as nonlinear logistic equation, also called the Hill model. The results of the IVM efficacy against a sensible strain of R. microplus were analysed whit both model. A comparison between the results obtained with PROBIT and Hill model showed that the last one was able to make a more precise fit of the experimental data, generating more information about small IVM concentrations.  The C50 (13.58 ppm) obtained with Probit model result smaller than the obtained with the Hill model (14.24 ppm), however the C90, C99 and the discriminant dose (19.31 ppm, 25.74 ppm, 51.48 ppm) obtained with de Hill model were bigger than the obtained with the Probit model (17.50 ppm, 21.98 ppm, 43.96 ppm).


Author(s):  
О.В. Шамова ◽  
М.С. Жаркова ◽  
П.М. Копейкин ◽  
Д.С. Орлов ◽  
Е.А. Корнева

Антимикробные пептиды (АМП) системы врожденного иммунитета - соединения, играющие важную роль в патогенезе инфекционных заболеваний, так как обладают свойством инактивировать широкий спектр патогенных бактерий, обеспечивая противомикробную защиту живых организмов. В настоящее время АМП рассматриваются как потенциальные соединения-корректоры инфекционной патологии, вызываемой антибиотикорезистентными бактериями (АБР). Цель данной работы состояла в изученим механизмов антибактериального действия трех пептидов, принадлежащих к семейству бактенецинов - ChBac3.4, ChBac5 и mini-ChBac7.5Nb. Эти химически синтезированные пептиды являются аналогами природных пролин-богатых АМП, обнаруженных в лейкоцитах домашней козы Capra hircus и проявляющих высокую антимикробную активность, в том числе и в отношении грамотрицательных АБР. Методы. Минимальные ингибирующие и минимальные бактерицидные концентрации пептидов (МИК и МБК) определяли методом серийных разведений в жидкой питательной среде с последующим высевом на плотную питательную среду. Эффекты пептидов на проницаемость цитоплазматической мембраны бактерий для хромогенного маркера исследовали с использованием генетически модифицированного штамма Escherichia coli ML35p. Действие бактенецинов на метаболическую активность бактерий изучали с применением маркера резазурина. Результаты. Показано, что все исследованные пептиды проявляют высокую антимикробную активность в отношении Escherichia coli ML35p и антибиотикоустойчивых штаммов Escherichia coli ESBL и Acinetobacter baumannii in vitro, но их действие на бактериальные клетки разное. Использован комплекс методик, позволяющих наблюдать в режиме реального времени динамику действия бактенецинов в различных концентрациях (включая их МИК и МБК) на барьерную функцию цитоплазматической мембраны и на интенсивность метаболизма бактериальных клеток, что дало возможность выявить различия в характере воздействия бактенецинов, отличающихся по структуре молекулы, на исследуемые микроорганизмы. Установлено, что действие каждого из трех исследованных бактенецинов в бактерицидных концентрациях отличается по эффективности нарушения целостности бактериальных мембран и в скорости подавления метаболизма клеток. Заключение. Полученная информация дополнит существующие фундаментальные представления о механизмах действия пролин-богатых пептидов врожденного иммунитета, а также послужит основой для биотехнологических исследований, направленных на разработку на базе этих соединений новых антибиотических препаратов для коррекции инфекционных заболеваний, вызываемых АБР и являющимися причинами тяжелых внутрибольничных инфекций. Antimicrobial peptides (AMPs) of the innate immunity are compounds that play an important role in pathogenesis of infectious diseases due to their ability to inactivate a broad array of pathogenic bacteria, thereby providing anti-microbial host defense. AMPs are currently considered promising compounds for treatment of infectious diseases caused by antibiotic-resistant bacteria. The aim of this study was to investigate molecular mechanisms of the antibacterial action of three peptides from the bactenecin family, ChBac3.4, ChBac5, and mini-ChBac7.5Nb. These chemically synthesized peptides are analogues of natural proline-rich AMPs previously discovered by the authors of the present study in leukocytes of the domestic goat, Capra hircus. These peptides exhibit a high antimicrobial activity, in particular, against antibiotic-resistant gram-negative bacteria. Methods. Minimum inhibitory and minimum bactericidal concentrations of the peptides (MIC and MBC) were determined using the broth microdilution assay followed by subculturing on agar plates. Effects of the AMPs on bacterial cytoplasmic membrane permeability for a chromogenic marker were explored using a genetically modified strain, Escherichia coli ML35p. The effect of bactenecins on bacterial metabolic activity was studied using a resazurin marker. Results. All the studied peptides showed a high in vitro antimicrobial activity against Escherichia coli ML35p and antibiotic-resistant strains, Escherichia coli ESBL and Acinetobacter baumannii, but differed in features of their action on bacterial cells. The used combination of techniques allowed the real-time monitoring of effects of bactenecin at different concentrations (including their MIC and MBC) on the cell membrane barrier function and metabolic activity of bacteria. The differences in effects of these three structurally different bactenecins on the studied microorganisms implied that these peptides at bactericidal concentrations differed in their capability for disintegrating bacterial cell membranes and rate of inhibiting bacterial metabolism. Conclusion. The obtained information will supplement the existing basic concepts on mechanisms involved in effects of proline-rich peptides of the innate immunity. This information will also stimulate biotechnological research aimed at development of new antibiotics for treatment of infectious diseases, such as severe in-hospital infections, caused by antibiotic-resistant strains.


Author(s):  
Dilip Kumar Gupta ◽  
B K Razdan ◽  
Meenakshi Bajpai

The present study deals with the formulation and evaluation of mefloquine hydrochloride nanoparticles. Mefloquine is a blood schizonticidal quinoline compound, which is indicated for the treatment of mild-to-moderate acute malarial infections caused by mefloquine-susceptible multi-resistant strains of P. falciparum and P. vivax. The purpose of the present work is to minimize the dosing frequency, taste masking toxicity and to improve the therapeutic efficacy by formulating mefloquine HCl nanoparticles. Mefloquine nanoparticles were formulated by emulsion diffusion method using polymer poly(ε-caprolactone) with six different formulations. Nanoparticles were characterized by determining its particle size, polydispersity index, drug entrapment efficiency, drug content, particle morphological character and drug release. The particle size ranged between 100 nm to 240 nm. Drug entrapment efficacy was >95%. The in-vitro release of nanoparticles were carried out which exhibited a sustained release of mefloquine HCl from nanoparticles up to 24 hrs. The results showed that nanoparticles can be a promising drug delivery system for sustained release of mefloquine HCl.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 825
Author(s):  
Henrique Pinto ◽  
Manuel Simões ◽  
Anabela Borges

This study sought to assess the prevalence and impact of biofilms on two commonly biofilm-related infections, bloodstream and urinary tract infections (BSI and UTI). Separated systematic reviews and meta-analyses of observational studies were carried out in PubMed and Web of Sciences databases from January 2005 to May 2020, following PRISMA protocols. Studies were selected according to specific and defined inclusion/exclusion criteria. The obtained outcomes were grouped into biofilm production (BFP) prevalence, BFP in resistant vs. susceptible strains, persistent vs. non-persistent BSI, survivor vs. non-survivor patients with BSI, and catheter-associated UTI (CAUTI) vs. non-CAUTI. Single-arm and two-arm analyses were conducted for data analysis. In vitro BFP in BSI was highly related to resistant strains (odds ratio-OR: 2.68; 95% confidence intervals-CI: 1.60–4.47; p < 0.01), especially for methicillin-resistant Staphylococci. BFP was also highly linked to BSI persistence (OR: 2.65; 95% CI: 1.28–5.48; p < 0.01) and even to mortality (OR: 2.05; 95% CI: 1.53–2.74; p < 0.01). Candida spp. was the microorganism group where the highest associations were observed. Biofilms seem to impact Candida BSI independently from clinical differences, including treatment interventions. Regarding UTI, multi-drug resistant and extended-spectrum β-lactamase-producing strains of Escherichia coli, were linked to a great BFP prevalence (OR: 2.92; 95% CI: 1.30–6.54; p < 0.01 and OR: 2.80; 95% CI: 1.33–5.86; p < 0.01). More in vitro BFP was shown in CAUTI compared to non-CAUTI, but with less statistical confidence (OR: 2.61; 95% CI: 0.67–10.17; p < 0.17). This study highlights that biofilms must be recognized as a BSI and UTI resistance factor as well as a BSI virulence factor.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S655-S655
Author(s):  
Daniel Navas ◽  
Angela Charles ◽  
Amy Carr ◽  
Jose Alexander

Abstract Background The activity of imipenem/relebactam (I/R), ceftazidime/avibactam (CZA) and cefiderocol (FDC) were evaluated against clinical isolates of multidrug resistant (MDR) strains of P. aeruginosa which was resistant to ceftolozane/tazobactam (C/T). The recent increase of MDR P. aeruginosa strains isolated from clinical samples has prompted research and development of new antimicrobials that can withstand its multiple resistance mechanisms. C/T is an effective option for treatment of MDR P. aeruginosa in our facility with only 10% of resistance in MDR strains, but the emergence of resistance may occur due to the presence of a carbapenemase gene or an ampC mutation. Methods Antimicrobial susceptibility testing for C/T Etest® (bioMérieux, Inc.) were performed on all MDR strains initially screened by the VITEK2® (bioMérieux, Inc.). 10% (n=20) of all MDR isolates were resistant to C/T by the CLSI 2019 breakpoints. These resistant isolates were tested for presence of a carbapenemase gene using the GeneXpert CARBA-R (Cepheid®) PCR and against CZA Etest® (bioMérieux, Inc.) I/R gradient strips (Liofilchem®) and FDC broth microdilution (Thermo Scientific™ Sensititre™). Results A total of 20 clinical isolates of MDR P. aeruginosa resistant to C/T were tested following standardized CLSI protocols and techniques. All 20 isolates were screened for the presence of a carbapenemase gene (blaVIM, blaNDM, blaKPC, blaOXA-48, blaIMP). A blaVIM gene was detected in 6 (30%) out of 20 isolates. FDC demonstrated the greatest activity with 85% (n=17) of susceptible isolates (CLSI MIC &lt;4µg/dL). CZA (CLSI MIC &lt;8µg/dL) and I/R (FDA MIC &lt;2µg/dL) showed 15% (n=3) and 10% (n=2) of susceptible isolates respectively. FDC was active against all 6 blaVIM isolates, where all 6 strains were resistant to CZA and I/R as expected. 3 isolates tested non-susceptible against FDC; additional characterization was not performed at this time. Conclusion Based on these results, FDC demonstrated the greatest in-vitro activity against C/T resistant strains of MDR P. aeruginosa. FDC also demonstrated activity against all 6 MDR P. aeruginosa carrying blaVIM gene. FDC is a strong option to consider on MDR P. aeruginosa strains based on a resistance testing algorithm and a cost/effective protocol. Disclosures All Authors: No reported disclosures


2021 ◽  
Vol 22 (13) ◽  
pp. 7202
Author(s):  
Tamara Bruna ◽  
Francisca Maldonado-Bravo ◽  
Paul Jara ◽  
Nelson Caro

Silver nanoparticles (AgNPs) have been imposed as an excellent antimicrobial agent being able to combat bacteria in vitro and in vivo causing infections. The antibacterial capacity of AgNPs covers Gram-negative and Gram-positive bacteria, including multidrug resistant strains. AgNPs exhibit multiple and simultaneous mechanisms of action and in combination with antibacterial agents as organic compounds or antibiotics it has shown synergistic effect against pathogens bacteria such as Escherichia coli and Staphylococcus aureus. The characteristics of silver nanoparticles make them suitable for their application in medical and healthcare products where they may treat infections or prevent them efficiently. With the urgent need for new efficient antibacterial agents, this review aims to establish factors affecting antibacterial and cytotoxic effects of silver nanoparticles, as well as to expose the advantages of using AgNPs as new antibacterial agents in combination with antibiotic, which will reduce the dosage needed and prevent secondary effects associated to both.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1535
Author(s):  
M. Adaszyńska-Skwirzyńska ◽  
D. Szczerbińska ◽  
S. Zych

Biological activity of lavender essential oil is a property that can potentially find an application in poultry nutrition. Nowadays, the use of bioactive compounds is encouraged in many areas of industry and agriculture, since these substances have similar properties as withdrawn antibiotic growth promoters. Additionally, antibiotic resistance bacteria are one of the most important current threats to animal health. The purpose of the study was to determine the influence of lavender essential oil on the production parameters and blood parameters in broiler chickens and to assess the lavender oil’s in vitro reaction in a combination with enrofloxacin towards Escherichia coli. One-day-old non-sexed chicks (Ross 308) were divided into three experimental groups, each consisting of 100 individuals (five replicate of 20 boiler chicken each). The chickens in the control group received drinking water with no addition of lavender essential oil. In the experimental groups, lavender oil was added to the drinking water at a concentration of 0.4 mL/L, in the LEO1–42 from 1 to 42 days of age and the LEO22–42 group from the 22 to 42 days of age. The chickens’ body weight, feed consumption, water consumption, deaths and elimination due to health reasons were determined in the experiment. On day 42 of the chickens’ lives, blood samples were collected based on which selected parameters were identified. An in vitro experiment of lavender oil in combination with enrofloxacin was investigated with a checkerboard method. The results of the experiment showed the antimicrobial and antioxidant activity of lavender essential oil and its positive effect on the production results of broiler chickens. The study results proved that the addition of lavender oil positively impacted the chickens’ final body weight and feed conversion ratio (p < 0.01). No differences were observed between the groups for water consumption, death rate and the examined biochemical and immunological blood serum indices. Lavender essential oil was demonstrated to increase the blood serum’s total antioxidant status. A synergistic reaction in vitro was observed for lavender oil combined with enrofloxacin against resistant strains of Escherichia coli. Based on our study, a health-promoting effect of adding LEO to water for broiler chickens was found. Moreover, in vitro studies indicate a significant effect of lavender essential oil on the inhibition of the resistant strains of Escherichia coli growth and synergistic reaction with enrofloxacin.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Akshaykumar Nayak ◽  
Himani Saxena ◽  
Chandramohan Bathula ◽  
Tarkeshwar Kumar ◽  
Souvik Bhattacharjee ◽  
...  

Abstract Background Despite numerous efforts to eradicate the disease, malaria continues to remain one of the most dangerous infectious diseases plaguing the world. In the absence of any effective vaccines and with emerging drug resistance in the parasite against the majority of anti-malarial drugs, the search for new drugs is urgently needed for effective malaria treatment. Methods The goal of the present study was to examine the compound library, based on indoles generated through diversity-oriented synthesis belonging to four different architecture, i.e., 1-aryltetrahydro/dihydro-β-carbolines and piperidine/pyrrolidine-fused indole derivatives, for their in vitro anti-plasmodial activity. Trifluoroacetic acid catalyzed transformation involving tryptamine and various aldehydes/ketones provided the library. Results Among all the compounds screened, 1-aryltetrahydro-β-carbolines 2 and 3 displayed significant anti-plasmodial activity against both the artemisinin-sensitive and artemisinin-resistant strain of Plasmodium falciparum. It was observed that these compounds inhibited the overall parasite growth in intra-erythrocytic developmental cycle (IDC) via reactive oxygen species-mediated parasitic death and thus could be potential anti-malarial compounds. Conclusion Overall the compounds 2 and 3 identified in this study shows promising anti-plasmodial activity that can kill both artemisinin-sensitive and artemisinin-resistant strains of P. falciparum.


Sign in / Sign up

Export Citation Format

Share Document