scholarly journals Ultrasonic-accelerated metallurgical reaction of Sn/Ni composite solder: Principle, kinetics, microstructure, and joint properties

2020 ◽  
Vol 66 ◽  
pp. 105090 ◽  
Author(s):  
Wenwu Zhang ◽  
Yichen Cao ◽  
Jiayi Huang ◽  
Weiwei Zhao ◽  
Xiangli Liu ◽  
...  
Author(s):  
D. C. Lin ◽  
C. Y. Kuo ◽  
T. S. Srivatsan ◽  
G.-X. Wang

This paper presents and discusses the solidification of Sn-Ag eutectic solder and the effect of cooling rate on its microstructure formation with and without addition of nanosized copper powders. The composite solder mixture was mechanically mixed, and subsequently melted in an aluminum crucible placed in a temperature-controlled furnance, prior to promoting solidification. For all cases significant undercooling of the melt was observed prior to solidification. A reduction in the solidification temperature occurred by the addition of copper nanopowders. Optical microscopy observations revealed the microstructure of solders, in the as-solidified condition, to be appreciably altered by the addition of nanosized copper powders. The copper nanopowders were precipitated as an intermetallic compound. The average size of the intermetallic compound decreased as the cooling rate increased. These results suggest that adding nanosize metallic powders may significantly alter and/or improve solder joint properties.


2012 ◽  
Vol 24 (3) ◽  
pp. 839-847 ◽  
Author(s):  
A. Roshanghias ◽  
A. H. Kokabi ◽  
Y. Miyashita ◽  
Y. Mutoh ◽  
H. R. Madaah Hosseini

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 776
Author(s):  
Nur Syahirah Mohamad Zaimi ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Andrei Victor Sandu ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Norainiza Saud ◽  
...  

This paper elucidates the effect of isothermal ageing at temperature of 85 °C, 125 °C and 150 °C for 100, 500 and 1000 h on Sn-3.0Ag-0.5Cu (SAC305) lead-free solder with the addition of 1 wt% kaolin geopolymer ceramic (KGC) reinforcement particles. SAC305-KGC composite solders were fabricated through powder metallurgy using a hybrid microwave sintering method and reflowed on copper substrate printed circuit board with an organic solderability preservative surface finish. The results revealed that, the addition of KGC was beneficial in improving the total thickness of interfacial intermetallic compound (IMC) layer. At higher isothermal ageing of 150 °C and 1000 h, the IMC layer in SAC305-KGC composite solder was towards a planar-type morphology. Moreover, the growth of total interfacial IMC layer and Cu3Sn layer during isothermal ageing was found to be controlled by bulk diffusion and grain-boundary process, respectively. The activation energy possessed by SAC305-KGC composite solder for total interfacial IMC layer and Cu3Sn IMC was 74 kJ/mol and 104 kJ/mol, respectively. Based on a lap shear test, the shear strength of SAC305-KGC composite solder exhibited higher shear strength than non-reinforced SAC305 solder. Meanwhile, the solder joints failure mode after shear testing was a combination of brittle and ductile modes at higher ageing temperature and time for SAC305-KGC composite solder.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 733
Author(s):  
Lu Liu ◽  
Songbai Xue ◽  
Ruiyang Ni ◽  
Peng Zhang ◽  
Jie Wu

In this study, a Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was prepared by mixing Sn–Bi solder powder, flux, and epoxy system. The melting characteristics of the Sn–Bi solder alloy and the curing reaction of the epoxy system were measured by differential scanning calorimeter (DSC). A reflow profile was optimized based on the Sn–Bi reflow profile, and the Organic Solderability Preservative (OSP) Cu pad mounted 0603 chip resistor was chosen to reflow soldering and to prepare samples of the corresponding joint. The high temperature and humidity reliability of the solder joints at 85 °C/85% RH (Relative Humidity) for 1000 h and the thermal cycle reliability of the solder joints from −40 °C to 125 °C for 1000 cycles were investigated. Compared to the Sn–Bi solder joint, the TSEP Sn–Bi solder joints had increased reliability. The microstructure observation shows that the epoxy resin curing process did not affect the transformation of the microstructure. The shear force of the TSEP Sn–Bi solder joints after 1000 cycles of thermal cycling test was 1.23–1.35 times higher than the Sn–Bi solder joint and after 1000 h of temperature and humidity tests was 1.14–1.27 times higher than the Sn–Bi solder joint. The fracture analysis indicated that the cured cover layer could still have a mechanical reinforcement to the TSEP Sn–Bi solder joints after these reliability tests.


2010 ◽  
Vol 638-642 ◽  
pp. 2058-2063 ◽  
Author(s):  
Koji Inada ◽  
Hidetoshi Fujii ◽  
Young Su Ji ◽  
Yoshiaki Morisada ◽  
Kiyoshi Nogi

Friction powder processing (FPP) has been developed based on the principle of friction stir welding (FSW) or friction stir processing (FSP). The FPP is a method to design the properties of the processed area by performing FSP after powder with a controlled composition is placed in the gap between two plates. The FPP experiments were performed using a tool with the shoulder diameter of 15mm and the probe diameter of 6mm. The tool traveled at 100mm/min and rotated at 1500rpm. A1050 aluminum was used as the plate. Pure Al powder (89μm average grain diameter) and pure Cu powder (106μm average grain diameter) were used as the additives. When using pure Al powder, the pure Al powder left in the base metal after the first pass is sufficiently stirred by performing the second pass and then a good joint without defects is obtained. However, more than three passes are not effective for improving the strength of the welded area. When using pure Cu powder, nanoscale Al2Cu precipitates are uniformly formed in the stir zone, and accordingly, the hardness is significantly increased.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1545
Author(s):  
Agata Skwarek ◽  
Olivér Krammer ◽  
Tamás Hurtony ◽  
Przemysław Ptak ◽  
Krzysztof Górecki ◽  
...  

The properties of Sn99Ag0.3Cu0.7 (SACX0307) solder alloy reinforced with ZnO nanoparticles were investigated. The primary ZnO particle sizes were 50, 100, and 200 nm. They were added to a solder paste at a ratio of 1.0 wt %. The wettability, the void formation, the mechanical strength, and the thermoelectric parameters of the composite solder alloys/joints were investigated. Furthermore, microstructural evaluations were performed using scanning electron and ion microscopy. ZnO nanoparticles decreased the composite solder alloys’ wettability, which yielded increased void formation. Nonetheless, the shear strength and the thermoelectric parameters of the composite solder alloy were the same as those of the SACX0307 reference. This could be explained by the refinement effects of ZnO ceramics both on the Sn grains and on the Ag3Sn and Cu6Sn5 intermetallic grains. This could compensate for the adverse impact of lower wettability. After improving the wettability, using more active fluxes, ZnO composite solder alloys are promising for high-power applications.


Sign in / Sign up

Export Citation Format

Share Document