How environmentally significant is water consumption during wastewater treatment?: Application of recent developments in LCA to WWT technologies used at 3 contrasted geographical locations

2014 ◽  
Vol 57 ◽  
pp. 20-30 ◽  
Author(s):  
Eva Risch ◽  
Philippe Loubet ◽  
Montserrat Núñez ◽  
Philippe Roux
Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2043 ◽  
Author(s):  
Goh ◽  
Ismail ◽  
Ng ◽  
Abdullah

Production of potable water or reclaimed water with higher quality are in demand to address water scarcity issues as well as to meet the expectation of stringent water quality standards. Forward osmosis (FO) provides a highly promising platform for energy-efficient membrane-based separation technology. This emerging technology has been recognized as a potential and cost-competitive alternative for many conventional wastewater treatment technologies. Motivated by its advantages over existing wastewater treatment technologies, the interest of applying FO technology for wastewater treatment has increased significantly in recent years. This article focuses on the recent developments and innovations in FO for wastewater treatment. An overview of the potential of FO in various wastewater treatment application will be first presented. The contemporary strategies used in membrane designs and fabrications as well as the efforts made to address membrane fouling are comprehensively reviewed. Finally, the challenges and future outlook of FO for wastewater treatment are highlighted.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 53-60 ◽  
Author(s):  
B. Rabinowitz ◽  
T. D. Vassos ◽  
R. N. Dawson ◽  
W. K. Oldham

A brief review of recent developments in biological nitrogen and phosphorus removal technology is presented. Guidelines are outlined of how current understanding of these two removal mechanisms can be applied in the upgrading of existing wastewater treatment plants for biological nutrient removal. A case history dealing with the upgrading of the conventional activated sludge process located at Penticton, British Columbia, to a biological nutrient removal facility with a design flow of 18,200 m3/day (4.0 IMGD) is presented as a design example. Process components requiring major modification were the headworks, bioreactors and sludge handling facilities.


2020 ◽  
Author(s):  
Francisco Jose Alguacil ◽  
Felix A. Lopez

The problem of the treatment of contaminated wastewaters is of the upmost worldwide interest. This contamination occurs via the presence of inorganic or organic contaminants of different nature in relation with the industry they come from. In the case of organic dyes, their environmental impact, and thus, their toxicity come from the air (releasing of dust and particulate matter), solid (scrap of textile fabrics, sludges), though the great pollution, caused from dyes, comes from the discharge of untreated effluents into waters, contributing to increase the level of BOD and COD in these liquid streams; this discharge is normally accompanied by water coloration, which low the water quality, and caused a secondary issue in the wastewater treatment. Among separation technologies, adsorption processing is one of the most popular, due to its versatility, easiness of work, and possibility of scaling-up in the eve of the treatment of large wastewater volumes. Within a miriade of potential adsorbents for the removal of organic dyes, this work presented the most recent advances in the topic.


1972 ◽  
Vol 7 (1) ◽  
pp. 1-12
Author(s):  
A. Benedek

Abstract Recent developments in the application of activated carbon to wastewater treatment are reviewed. Particular emphasis is placed on the physico-chemical treatment of municipal waste. Technological development, adsorptive behaviour, and research needs serve as the three primary discussion topics.


Author(s):  
Cayla Cook ◽  
Veera Gnaneswar Gude

Chitosan is a naturally occurring biopolymer originating from several microbial species as well as crustacean species, such as shrimp and lobster. Chitosan has excellent physical and chemical properties that allow its use in various environmental applications especially in water treatment. It is a biodegradable polymer, and it is inexpensive providing an environmentally friendly and economic option for water and wastewater treatment. Chitosan offers a myriad of applications through chemical coagulation and flocculation, antimicrobial properties, adsorption capabilities, and nanofiltration and can provide a sustainable route for water and wastewater treatment. This book chapter elaborates the recent developments in chitosan applications in water and wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document