scholarly journals The hyaloid vasculature facilitates basement membrane breakdown during choroid fissure closure in the zebrafish eye

2016 ◽  
Vol 419 (2) ◽  
pp. 262-272 ◽  
Author(s):  
Andrea James ◽  
Chanjae Lee ◽  
Andre M. Williams ◽  
Krista Angileri ◽  
Kira L. Lathrop ◽  
...  
2019 ◽  
Vol 2 (6) ◽  
pp. e201900582 ◽  
Author(s):  
Avery Van Duzer ◽  
Sachiko Taniguchi ◽  
Ajit Elhance ◽  
Takahiro Tsujikawa ◽  
Naoki Oshimori

Invasive squamous cell carcinoma (SCC) is aggressive cancer with a high risk of recurrence and metastasis, but the critical determinants of its progression remain elusive. Here, we identify ADAP1, a GTPase-activating protein (GAP) for ARF6 up-regulated in TGF-β-responding invasive tumor cells, as a strong predictor of poor survival in early-stage SCC patients. Using a mouse model of SCC, we show that ADAP1 overexpression promotes invasive tumor progression by facilitating cell migration and breakdown of the basement membrane. We found that ADAP1-rich, TGF-β-responding tumor cells exhibit cytoplasmic laminin localization, which correlated with the absence of laminin and type IV collagen from the pericellular basement membrane. Interestingly, although tumors overexpressing a GAP activity-deficient mutant of ADAP1 resulted in morphologically complex tumors, those tumor cells failed to breach the basement membrane. Moreover, Adap1 deletion in tumor cells ameliorated the basement membrane breakdown and had less invading cells in the stroma. Our study demonstrates that ADAP1 is a critical mediator of TGF-β-induced cancer invasion and might be exploited for the treatment of high-risk SCC.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Mallika Pathania ◽  
Elena V. Semina ◽  
Melinda K. Duncan

We report analysis of the ocular lens phenotype of the recessive, larval lethal zebrafish mutant,lama1a69/a69. Previous work revealed that this mutant has a shortened body axis and eye defects including a defective hyaloid vasculature, focal corneal dysplasia, and loss of the crystalline lens. While these studies highlight the importance of lamininα1 in lens development, a detailed analysis of the lens defects seen in these mutants was not reported. In the present study, we analyze the lenticular anomalies seen in thelama1a69/a69mutants and show that the lens defects result from the anterior extrusion of lens material from the eye secondary to structural defects in the lens capsule and developing corneal epithelium associated with basement membrane loss. Our analysis provides further insights into the role of the lens capsule and corneal basement membrane in the structural integrity of the developing eye.


1998 ◽  
Vol 66 (10) ◽  
pp. 4851-4855 ◽  
Author(s):  
Shin-ichi Miyoshi ◽  
Hiromi Nakazawa ◽  
Koji Kawata ◽  
Ken-ichi Tomochika ◽  
Kazuo Tobe ◽  
...  

ABSTRACT Vibrio vulnificus is an opportunistic human pathogen causing wound infections and septicemia, characterized by hemorrhagic and edematous damage to the skin. This human pathogen secretes a metalloprotease (V. vulnificus protease [VVP]) as an important virulence determinant. When several bacterial metalloproteases including VVP were injected intradermally into dorsal skin, VVP showed the greatest hemorrhagic activity. The level of the in vivo hemorrhagic activity of the bacterial metalloproteases was significantly correlated with that of the in vitro proteolytic activity for the reconstituted basement membrane gel. Of two major basement membrane components (laminin and type IV collagen), only type IV collagen was easily digested by VVP. Additionally, the immunoglobulin G antibody against type IV collagen, but not against laminin, showed sufficient protection against the hemorrhagic reaction caused by VVP. Capillary vessels are known to be stabilized by binding of the basal surface of vascular endothelial cells to the basement membrane. Therefore, specific degradation of type IV collagen may cause destruction of the basement membrane, breakdown of capillary vessels, and leakage of blood components including erythrocytes.


2003 ◽  
Vol 70 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Kay AK Hendry ◽  
Christopher H Knight ◽  
Hugh Galbraith ◽  
Colin J Wilde

Damage to, or deterioration of, the keratinized horn tissue of the bovine hoof claw culminates ultimately in the development of solear ulceration. We have observed abnormal keratin distribution at the site of solear ulceration in the bovine claw that may be due to alteration of the positional cues of the keratinocytes. In this study we have characterized key cell biological changes associated with ulceration in the claw that may precipitate abnormal keratinization. Loss of basement membrane at sites of ulceration was found by immunofluorescent detection of laminin and integrins. In other tissues, basement membrane breakdown results from degradation by matrix metalloproteinases (MMPs). Similarly, elevated levels of MMPs 2 and 9 were observed in ulcerated bovine claw tissue both by zymography and, quantitatively, by assay of enzyme activity. In the sole of claws that contained an ulcer, tissue distal to the ulcer site also had elevated MMP 2 when compared with healthy sole tissue from the same animals, as did sole tissue of claws recovering from ulceration. Tissue inhibitor of metalloproteinase 2 (TIMP 2) was detected by ELISA in healthy tissue. TIMP 2 tended to be lower in diseased tissue distal to ulcer sites, and was significantly lower in ulcerated tissue. MMP 2 was located by immunofluorescence in the dermal and basal epidermal region of sole tissue, in the region of the basement membrane. Increased punctate staining of material in the dermis was associated with ulcerated material. ELISA of TIMP 2 in tissue extracts enriched for dermis or epidermis confirmed that the inhibitor was located predominantly in the dermis. To investigate a possible causal relationship between basement membrane anchorage and epidermal keratinization, the effect of function-blocking antibodies to laminins and integrins was tested in tissue explant cultures prepared from healthy sole tissue. Anti-integrin antibody treatment had no effect on either protein or DNA synthesis. In contrast, in the presence of anti-laminin antibody, protein synthesis was decreased in a concentration-dependent manner, a significant effect being observed at the highest concentration after treatment for 24 h. At this concentration, DNA synthesis was also decreased after 48 h of culture, an effect that may be relevant to a hibernal reduction in claw cell turnover, and the associated seasonal vulnerability of cows to claw damage. The results provide evidence for basement membrane disruption at ulcer sites, and an increased potential for disruption in the diseased claw, and a causal link between this and abnormal epidermal keratinization. Basement membrane disruption is in turn associated with reciprocal changes in MMPs and their inhibitors, favouring extracellular proteolysis. Whether MMP activation is the primary cause of dermal–epidermal deterioration and, if so, how MMP activation is triggered, remains to be determined.


2019 ◽  
Author(s):  
Megan L. Weaver ◽  
W. P Piedade ◽  
N.N Meshram ◽  
J.K. Famulski

ABSTRACTVertebrate retinal development requires timely and precise fusion of the optic fissure (OF). Recent studies have suggested hyaloid vasculature to be involved in optic fissure fusion. In order to examine this link, we analyzed OF fusion and hyaloid vasculogenesis in the zebrafish pax2anoi mutant line. We determined that OF basement membrane (BM) remodeling, normally preceded by F-actin accumulation is mis-regulated in pax2a−/− embryos. Comparing transcriptomic profiles of pax2a−/− and wildtype eyes we discovered a novel connection between regulation of angiogenesis and fusion. Pax2a−/− eyes exhibited a significant reduction of talin1 expression, a regulator of hyaloid vasculature, in addition to increased expression of an anti-angiogenic protease, adamts1. Using 3D and live imaging we observed reduced OF hyaloid vascularization in pax2a−/− embryos. Additionally, pharmacological inhibition of VEGF signaling or adamts1 mRNA overexpression phenocopied the pax2a−/− vasculature, F-actin and BM remodeling phenotypes. Finally, we show that hyaloid vasculature expresses mmp2 which is necessary for remodeling the fissure BM. Taken together we propose a pax2a driven mechanism that restricts anti-angiogenic activity of adamts1 enabling hyaloid vasculature invasion of the OF and delivery of the BM remodeler mmp2.


Author(s):  
D. E. Philpott ◽  
A. Takahashi

Two month, eight month and two year old rats were treated with 10 or 20 mg/kg of E. Coli endotoxin I. P. The eight month old rats proved most resistant to the endotoxin. During fixation the aorta, carotid artery, basil arartery of the brain, coronary vessels of the heart, inner surfaces of the heart chambers, heart and skeletal muscle, lung, liver, kidney, spleen, brain, retina, trachae, intestine, salivary gland, adrenal gland and gingiva were treated with ruthenium red or alcian blue to preserve the mucopolysaccharide (MPS) coating. Five, 8 and 24 hrs of endotoxin treatment produced increasingly marked capillary damage, disappearance of the MPS coating, edema, destruction of endothelial cells and damage to the basement membrane in the liver, kidney and lung.


Author(s):  
Jared Grantham ◽  
Larry Welling

In the course of urine formation in mammalian kidneys over 90% of the glomerular filtrate moves from the tubular lumen into the peritubular capillaries by both active and passive transport mechanisms. In all of the morphologically distinct segments of the renal tubule, e.g. proximal tubule, loop of Henle and distal nephron, the tubular absorbate passes through a basement membrane which rests against the basilar surface of the epithelial cells. The basement membrane is in a strategic location to affect the geometry of the tubules and to influence the movement of tubular absorbate into the renal interstitium. In the present studies we have determined directly some of the mechanical and permeability characteristics of tubular basement membranes.


Author(s):  
Douglas R. Keene ◽  
Gregory P. Lunstrum ◽  
Patricia Rousselle ◽  
Robert E. Burgeson

A mouse monoclonal antibody produced from collagenase digests of human amnion was used by LM and TEM to study the distribution and ultrastructural features of an antigen present in epithelial tissues and in cultured human keratinocytes, and by immunoaffinity chromatography to partially purify the antigen from keratinocyte cell culture media.By immunofluorescence microscopy, the antigen displays a tissue distribution similar to type VII collagen; positive staining of the epithelial basement membrane is seen in skin, oral mucosa, trachea, esophagus, cornea, amnion and lung. Images from rotary shadowed preparations isolated by affinity chromatography demonstrate a population of rod-like molecules 107 nm in length, having pronounced globular domains at each end. Polyacrylamide gel electrophoresis suggests that the size of this molecule is approximately 440kDa, and that it is composed of three nonidentical chains disulfide bonded together.


Author(s):  
John H. L. Watson ◽  
C. N. Sun

That the etiology of Whipple's disease could be bacterial was first suggested from electron micrographs in 1960. Evidence for binary fission of the bacteria, their phagocytosis by histiocytes in the lamina propria, their occurrence between and within the cells of the epithelium and on the brush border of the lumen were reported later. Scanning electron microscopy has been applied by us in an attempt to confirm the earlier observations by the new technique and to describe the bacterium further. Both transmission and scanning electron microscopy have been used concurrently to study the same biopsy specimens, and transmission observations have been used to confirm those made by scanning.The locations of the brush borders, the columnar epithelial cells, the basement membrane and the lamina propria beneath it were each easily identified by scanning electron microscopy. The lamina propria was completely filled with the wiener-shaped bacteria, Fig. 1.


Author(s):  
R.P. Nayyar ◽  
C.F. Lange ◽  
J. L. Borke

Streptococcal cell membrane (SCM) antiserum injected mice show a significant thickening of glomerular basement membrane (GBM) and an increase in mesangial matrix within 4 to 24 hours of antiserum administration (1,2,3). This study was undertaken to evaluate the incorporation of 3H proline into glomerular cells and GBM under normal and anti-SCM induced conditions. Mice were administered, intraperitoneally, 0.1 ml of normal or anti-SCM serum followed by a 10 µC/g body weight injection of 3H proline. Details of the preparation of anti-SCM (Group A type 12 streptococcal pyogenes) and other sera and injection protocol have been described elsewhere (2). After 15 minutes of isotope injection a chase of cold proline was given and animal sacrificed at 20 minutes, 1,2,4,8,24 and 48 hours. One of the removed kidneys was processed for immunofluorescence, light and electron microscopic radioautographic studies; second kidney was used for GBM isolation and aminoacid analysis.


Sign in / Sign up

Export Citation Format

Share Document