scholarly journals Subcellular proteomic characterization of the high-temperature stress response of the cyanobacterium Spirulina platensis

2009 ◽  
Vol 7 (1) ◽  
pp. 33 ◽  
Author(s):  
Apiradee Hongsthong ◽  
Matura Sirijuntarut ◽  
Rayakorn Yutthanasirikul ◽  
Jittisak Senachak ◽  
Pavinee Kurdrid ◽  
...  
2020 ◽  
Vol 299 ◽  
pp. 113605
Author(s):  
Diana C. Castañeda-Cortés ◽  
Jing Zhang ◽  
Agustín F. Boan ◽  
Valerie S. Langlois ◽  
Juan I. Fernandino

1998 ◽  
Vol 180 (2) ◽  
pp. 426-429 ◽  
Author(s):  
Elaine Allan ◽  
Peter Mullany ◽  
Soad Tabaqchali

ABSTRACT Antiserum raised against whole Helicobacter pyloricells identified a novel 94-kDa antigen. The nucleotide sequence of the gene encoding the 94-kDa antigen was determined, and analysis of the deduced amino acid sequence revealed structural features typical of the ClpB ATPase family of stress response proteins. An isogenic H. pylori clpB mutant showed increased sensitivity to high-temperature stress, indicating that the clpB gene product functions as a stress response protein in H. pylori.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yo-Han Yoo ◽  
Woo-Jong Hong ◽  
Ki-Hong Jung

Chloroplasts are intracellular semiautonomous organelles central to photosynthesis and are essential for plant growth and yield. The significance of the function of chloroplast-related genes in response to climate change has not been well studied in crops. In the present study, the initial focus was on genes that were predicted to be located in the chloroplast genome in rice, a model crop plant, with genes either preferentially expressed in the leaf or ubiquitously expressed in all organs. The characteristics were analyzed by Gene Ontology (GO) enrichment and MapMan functional classification tools. It was then identified that 110 GO terms (45 for leaf expression and 65 for ubiquitous expression) and 1,695 genes mapped to MapMan overviews were strongly associated with chloroplasts. In particular, the MapMan cellular response overview revealed a close association between heat stress response and chloroplast-related genes in rice. Moreover, features of these genes in response to abiotic stress were analyzed using a large-scale publicly available transcript dataset. Consequently, the expression of 215 genes was found to be upregulated in response to high temperature stress. Conversely, genes that responded to other stresses were extremely limited. In other words, chloroplast-related genes were found to affect abiotic stress response mainly through high temperature response, with little effect on response to drought and salinity stress. These results suggest that genes involved in diurnal rhythm in the leaves participate in the reaction to recognize temperature changes in the environment. Furthermore, the predicted protein–protein interaction network analysis associated with high temperature stress is expected to provide a very important basis for the study of molecular mechanisms by which chloroplasts will respond to future climate changes.


2021 ◽  
Vol 12 ◽  
Author(s):  
S. Mukesh Sankar ◽  
C. Tara Satyavathi ◽  
Sharmistha Barthakur ◽  
Sumer Pal Singh ◽  
C. Bharadwaj ◽  
...  

The survival, biomass, and grain yield of most of the crops are negatively influenced by several environmental stresses. The present study was carried out by using transcript expression profiling for functionally clarifying the role of genes belonging to a small heat shock protein (sHSP) family in pearl millet under high-temperature stress. Transcript expression profiling of two high-temperature-responsive marker genes, Pgcp70 and PgHSF, along with physio-biochemical traits was considered to screen out the best contrasting genotypes among the eight different pearl millet inbred lines in the seedling stage. Transcript expression pattern suggested the existence of differential response among different genotypes upon heat stress in the form of accumulation of heat shock-responsive gene transcripts. Genotypes, such as WGI 126, TT-1, TT-6, and MS 841B, responded positively toward high-temperature stress for the transcript accumulation of both Pgcp70 and PgHSF and also indicated a better growth under heat stress. PPMI-69 showed the least responsiveness to transcript induction; moreover, it supports the membrane stability index (MSI) data for scoring thermotolerance, thereby suggesting the efficacy of transcript expression profiling as a molecular-based screening technique for the identification of thermotolerant genes and genotypes at particular crop growth stages. The contrasting genotypes, such as PPMI-69 (thermosusceptible) and WGI-126 and TT-1 (thermotolerant), are further utilized for the characterization of thermotolerance behavior of sHSP by cloning a PgHSP16.97 from the thermotolerant cv. WGI-126. In addition, the investigation was extended for the identification and characterization of 28 different HSP20 genes through a genome-wide search in the pearl millet genome and an understanding of their expression pattern using the RNA-sequencing (RNA-Seq) data set. The outcome of the present study indicated that transcript profiling can be a very useful technique for high-throughput screening of heat-tolerant genotypes in the seedling stage. Also, the identified PgHSP20s genes can provide further insights into the molecular regulation of pearl millet stress tolerance, thereby bridging them together to fight against the unpredicted nature of abiotic stress.


Sign in / Sign up

Export Citation Format

Share Document