A simple model for the vaporization of droplets with large numbers of components

2000 ◽  
Vol 121 (1-2) ◽  
pp. 334-344 ◽  
Author(s):  
William L.H. Hallett
Keyword(s):  
1995 ◽  
Vol 09 (16) ◽  
pp. 985-988 ◽  
Author(s):  
A.M. JAYANNAVAR

We have solved analytically a simple model of evolution of particles driven by identical noise. We show that the trajectories of all particles collapse into a single trajectory at long time. This synchronization also leads to violation of the law of large numbers.


2015 ◽  
Vol 282 (1801) ◽  
pp. 20142675 ◽  
Author(s):  
Ulrike Bauer ◽  
Walter Federle ◽  
Hannes Seidel ◽  
T. Ulmar Grafe ◽  
Christos C. Ioannou

Carnivorous Nepenthes pitcher plants capture arthropods with specialized slippery surfaces. The key trapping surface, the pitcher rim (peristome), is highly slippery when wetted by rain, nectar or condensation, but not when dry. As natural selection should favour adaptations that maximize prey intake, the evolution of temporarily inactive traps seems paradoxical. Here, we show that intermittent trap deactivation promotes ‘batch captures' of ants. Prey surveys revealed that N. rafflesiana pitchers sporadically capture large numbers of ants from the same species. Continuous experimental wetting of the peristome increased the number of non-recruiting prey, but decreased the number of captured ants and shifted their trapping mode from batch to individual capture events. Ant recruitment was also lower to continuously wetted pitchers. Our experimental data fit a simple model that predicts that intermittent, wetness-based trap activation should allow safe access for ‘scout’ ants under dry conditions, thereby promoting recruitment and ultimately higher prey numbers. The peristome trapping mechanism may therefore represent an adaptation for capturing ants. The relatively rare batch capture events may particularly benefit larger plants with many pitchers. This explains why young plants of many Nepenthes species additionally employ wetness-independent, waxy trapping surfaces.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242123
Author(s):  
Andrew R. Plummer ◽  
Jonathan L. du Bois ◽  
Joseph M. Flynn ◽  
Jens Roesner ◽  
Siu Man Lee ◽  
...  

Background With large numbers of COVID-19 patients requiring mechanical ventilation and ventilators possibly being in short supply, in extremis two patients may have to share one ventilator. Careful matching of patient ventilation requirements is necessary. However, good matching is difficult to achieve as lung characteristics can have a wide range and may vary over time. Adding flow restriction to the flow path between ventilator and patient gives the opportunity to control the airway pressure and hence flow and volume individually for each patient. This study aimed to create and validate a simple model for calculating required flow restriction. Methods and findings We created a simple linear resistance-compliance model, termed the BathRC model, of the ventilator tubing system and lung allowing direct calculation of the relationships between pressures, volumes, and required flow restriction. Experimental measurements were made for parameter determination and validation using a clinical ventilator connected to two test lungs. For validation, differing amounts of restriction were introduced into the ventilator circuit. The BathRC model was able to predict tidal lung volumes with a mean error of 4% (min:1.2%, max:9.3%). Conclusion We present a simple model validated model that can be used to estimate required flow restriction for dual patient ventilation. The BathRC model is freely available; this tool is provided to demonstrate that flow restriction can be readily estimated. Models and data are available at DOI 10.15125/BATH-00816.


2021 ◽  
Vol 12 (3) ◽  
pp. 1-15
Author(s):  
Thomas Jack Huggins ◽  
Lili Yang ◽  
Jin Zhang ◽  
Marion Lara Tan ◽  
Raj Prasanna

Earthquake-related behaviors in Mexico and Japan have highlighted the need to better understand responses to demanding alerting scenarios. Both countries appear to have benefitted from an established early earthquake warning system for several years. However, recent alert responses documented in these settings have been unlikely to protect residents from death or severe injury. This represents a gap between alerting system investments and effectiveness which, among other implications, could result in very large numbers of avoidable injuries and even deaths. To help better understand and address this gap, the current paper presents a theoretical explanation of why alerted residents have responded in the ways that they did. Behavioral and cognitive theories are discussed towards an integrated but simple model of alert response behavior that can be used to guide further research. Challenges and opportunities for this further research are also outlined.


Author(s):  
T. G. Merrill ◽  
B. J. Payne ◽  
A. J. Tousimis

Rats given SK&F 14336-D (9-[3-Dimethylamino propyl]-2-chloroacridane), a tranquilizing drug, developed an increased number of vacuolated lymphocytes as observed by light microscopy. Vacuoles in peripheral blood of rats and humans apparently are rare and are not usually reported in differential counts. Transforming agents such as phytohemagglutinin and pokeweed mitogen induce similar vacuoles in in vitro cultures of lymphocytes. These vacuoles have also been reported in some of the lipid-storage diseases of humans such as amaurotic familial idiocy, familial neurovisceral lipidosis, lipomucopolysaccharidosis and sphingomyelinosis. Electron microscopic studies of Tay-Sachs' disease and of chloroquine treated swine have demonstrated large numbers of “membranous cytoplasmic granules” in the cytoplasm of neurons, in addition to lymphocytes. The present study was undertaken with the purpose of characterizing the membranous inclusions and developing an experimental animal model which may be used for the study of lipid storage diseases.


Author(s):  
Robert Corbett ◽  
Delbert E. Philpott ◽  
Sam Black

Observation of subtle or early signs of change in spaceflight induced alterations on living systems require precise methods of sampling. In-flight analysis would be preferable but constraints of time, equipment, personnel and cost dictate the necessity for prolonged storage before retrieval. Because of this, various tissues have been stored in fixatives and combinations of fixatives and observed at various time intervals. High pressure and the effect of buffer alone have also been tried.Of the various tissues embedded, muscle, cartilage and liver, liver has been the most extensively studied because it contains large numbers of organelles common to all tissues (Fig. 1).


Author(s):  
Roy Skidmore

The long-necked secretory cells in Onchidoris muricata are distributed in the anterior sole of the foot. These cells are interspersed among ciliated columnar and conical cells as well as short-necked secretory gland cells. The long-necked cells contribute a significant amount of mucoid materials to the slime on which the nudibranch travels. The body of these cells is found in the subepidermal tissues. A long process extends across the basal lamina and in between cells of the epidermis to the surface of the foot. The secretory granules travel along the process and their contents are expelled by exocytosis at the foot surface.The contents of the cell body include the nucleus, some endoplasmic reticulum, and an extensive Golgi body with large numbers of secretory vesicles (Fig. 1). The secretory vesicles are membrane bound and contain a fibrillar matrix. At high magnification the similarity of the contents in the Golgi saccules and the secretory vesicles becomes apparent (Fig. 2).


Author(s):  
C. C. Clawson ◽  
L. W. Anderson ◽  
R. A. Good

Investigations which require electron microscope examination of a few specific areas of non-homogeneous tissues make random sampling of small blocks an inefficient and unrewarding procedure. Therefore, several investigators have devised methods which allow obtaining sample blocks for electron microscopy from region of tissue previously identified by light microscopy of present here techniques which make possible: 1) sampling tissue for electron microscopy from selected areas previously identified by light microscopy of relatively large pieces of tissue; 2) dehydration and embedding large numbers of individually identified blocks while keeping each one separate; 3) a new method of maintaining specific orientation of blocks during embedding; 4) special light microscopic staining or fluorescent procedures and electron microscopy on immediately adjacent small areas of tissue.


Author(s):  
J.M. Titchmarsh

The advances in recent years in the microanalytical capabilities of conventional TEM's fitted with probe forming lenses allow much more detailed investigations to be made of the microstructures of complex alloys, such as ferritic steels, than have been possible previously. In particular, the identification of individual precipitate particles with dimensions of a few tens of nanometers in alloys containing high densities of several chemically and crystallographically different precipitate types is feasible. The aim of the investigation described in this paper was to establish a method which allowed individual particle identification to be made in a few seconds so that large numbers of particles could be examined in a few hours.A Philips EM400 microscope, fitted with the scanning transmission (STEM) objective lens pole-pieces and an EDAX energy dispersive X-ray analyser, was used at 120 kV with a thermal W hairpin filament. The precipitates examined were extracted using a standard C replica technique from specimens of a 2¼Cr-lMo ferritic steel in a quenched and tempered condition.


Sign in / Sign up

Export Citation Format

Share Document