The East Siberian basin in the Silurian: evidence for no large-scale sea-level changes

2001 ◽  
Vol 193 (1-2) ◽  
pp. 183-196 ◽  
Author(s):  
E.V. Artyushkov ◽  
P.A. Chekhovich
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yusuke Yokoyama ◽  
Anthony Purcell

AbstractPast sea-level change represents the large-scale state of global climate, reflecting the waxing and waning of global ice sheets and the corresponding effect on ocean volume. Recent developments in sampling and analytical methods enable us to more precisely reconstruct past sea-level changes using geological indicators dated by radiometric methods. However, ice-volume changes alone cannot wholly account for these observations of local, relative sea-level change because of various geophysical factors including glacio-hydro-isostatic adjustments (GIA). The mechanisms behind GIA cannot be ignored when reconstructing global ice volume, yet they remain poorly understood within the general sea-level community. In this paper, various geophysical factors affecting sea-level observations are discussed and the details and impacts of these processes on estimates of past ice volumes are introduced.


2019 ◽  
Vol 19 (5) ◽  
pp. 1067-1086 ◽  
Author(s):  
Frank Colberg ◽  
Kathleen L. McInnes ◽  
Julian O'Grady ◽  
Ron Hoeke

Abstract. Projections of sea level rise (SLR) will lead to increasing coastal impacts during extreme sea level events globally; however, there is significant uncertainty around short-term coastal sea level variability and the attendant frequency and severity of extreme sea level events. In this study, we investigate drivers of coastal sea level variability (including extremes) around Australia by means of historical conditions as well as future changes under a high greenhouse gas emissions scenario (RCP 8.5). To do this, a multi-decade hindcast simulation is validated against tide gauge data. The role of tide–surge interaction is assessed and found to have negligible effects on storm surge characteristic heights over most of the coastline. For future projections, 20-year-long simulations are carried out over the time periods 1981–1999 and 2081–2099 using atmospheric forcing from four CMIP5 climate models. Changes in extreme sea levels are apparent, but there are large inter-model differences. On the southern mainland coast all models simulated a southward movement of the subtropical ridge which led to a small reduction in sea level extremes in the hydrodynamic simulations. Sea level changes over the Gulf of Carpentaria in the north are largest and positive during austral summer in two out of the four models. In these models, changes to the northwest monsoon appear to be the cause of the sea level response. These simulations highlight a sensitivity of this semi-enclosed gulf to changes in large-scale dynamics in this region and indicate that further assessment of the potential changes to the northwest monsoon in a larger multi-model ensemble should be investigated, together with the northwest monsoon's effect on extreme sea levels.


2020 ◽  
Author(s):  
Gerben de Jager ◽  
Dicky Harishidayat ◽  
Benjamin Emmel ◽  
Ståle Emil Johansen

<p>Clinoforms are aquatic sedimentary features commonly associated with strata prograding from a shallower water depth into a deeper water depth. They are very sensitive to changes in water depth, rapidly moving along the shelf in response to sea level changes.  By reconstructing the initial clinoform geometry of buried clinoforms, an estimate of the paleo water depth (PWD) can be made. When this is done for several subsequent clinoform sets the amounts and rates of bathymetric changes can be calculated.</p><p>Here we present a novel approach to estimate clinoform parameters and depositional depths for continental margin clinoforms using seismic reflections, wellbore and biostratigraphy data. Seismic interpretation of three relatively east-west regional full-stack seismic reflection data from the continental margin of the western Barents Sea revealed twelve Late Cenozoic horizons. The clinoform shapes have been restored by removing the effects of compaction and flexural isostasy (backstripping). This includes the effects of glacial/interglacial scenarios on horizons with strong glaciomarine seismic indications.</p><p>Based on the reconstructed clinoform geometries we use empirical relationships from literature between clinoform geometry and depositional depth to estimate PWD values. In these analyses it is possible to estimate the PWD of the upper rollover point and the toe point by measuring the bottomset height, foreset height and topset height. A sensitivity analysis study has also been done on several different scenarios, varying elastic thickness, decompaction and net to gross ratio. Comparison with biostratigraphic water depth estimates indicate that PWD estimates revealed from clinoform parameters give reliable results.</p><p>Any mismatch between the backstripped PWD values and the PWD values derived from the clinoform geometry can then be attributed to geological processes not included in the backstripping process. Among others, these could be explained by rifting, thermal effects in the lithosphere, faulting or eustatic sea level changes. This allows the quantification of the magnitude of these large-scale crustal processes through time.</p><p>We will demonstrate that this method can further constrain the PWD on the continental margin clinoform system and thus can help to improve the understanding of the interplay between sedimentary processes and large-scale crustal processes. Furthermore, the PWD estimates will be a reliable input for further analysis of source-to-sink and stratigraphic forward modeling studies as well as reservoir and source rocks prediction on the petroleum development and exploration.</p><p> </p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Jean-François Legeais ◽  
Benoît Meyssignac ◽  
Yannice Faugère ◽  
Adrien Guerou ◽  
Michaël Ablain ◽  
...  

It is essential to monitor accurately current sea level changes to better understand and project future sea level rise (SLR). This is the basis to support the design of adaptation strategies to climate change. Altimeter sea level products are operationally produced and distributed by the E.U. Copernicus services dedicated to the marine environment (CMEMS) and climate change (C3S). The present article is a review paper that intends to explain why and to which extent the sea level monitoring indicators derived from these products are appropriate to develop adaptation strategies to SLR. We first present the main key scientific questions and challenges related to SLR monitoring. The different processing steps of the altimeter production system are presented including those ensuring the quality and the stability of the sea level record (starting in 1993). Due to the numerous altimeter algorithms required for the production, it is complex to ensure both the retrieval of high-resolution mesoscale signals and the stability of the large-scale wavelengths. This has led to the operational production of two different sea level datasets whose specificities are characterized. We present the corresponding indicators: the global mean sea level (GMSL) evolution and the regional map of sea level trends, with their respective uncertainties. We discuss how these products and associated indicators support adaptation to SLR, and we illustrate with an example of downstream application. The remaining gaps are analyzed and recommendations for the future are provided.


2003 ◽  
Vol 1 ◽  
pp. 459-526 ◽  
Author(s):  
Lars H. Nielsen

The continental to marine Upper Triassic – Jurassic succession of the Danish Basin and the Fennoscandian Border Zone is interpreted within a sequence stratigraphic framework, and the evolution of the depositional basin is discussed. The intracratonic Permian–Cenozoic Danish Basin was formed by Late Carboniferous – Early Permian crustal extension followed by subsidence governed primarily by thermal cooling and local faulting. The basin is separated from the stable Precambrian Baltic Shield by the Fennoscandian Border Zone, and is bounded by basement blocks of the Ringkøbing–Fyn High towards the south. In Late Triassic – Jurassic times, the basin was part of the epeiric shallow sea that covered most of northern Europe. The Upper Triassic – Jurassic basin-fill is subdivided into two tectono-stratigraphic units by a basinwide intra-Aalenian unconformity. The Norian – Lower Aalenian succession was formed under relative tectonic tranquillity and shows an overall layer-cake geometry, except for areas with local faults and salt movements. Deposition was initiated by a Norian transgression that led to shallow marine deposition and was accompanied by a gradual climatic change to more humid conditions. Extensive sheets of shoreface sand and associated paralic sediments were deposited during short-lived forced regressions in Rhaetian time. A stepwise deepening and development of fully marine conditions followed in the Hettangian – Early Sinemurian. Thick uniform basinwide mud blankets were deposited on an open storm-influenced shelf, while sand was trapped at the basin margins. This depositional pattern continued until Late Toarcian – Early Aalenian times when the basin became restricted due to renewed uplift of the Ringkøbing–Fyn High. In Middle Aalenian – Bathonian times, the former basin area was subjected to deep erosion, and deposition became restricted to the fault-bounded Sorgenfrei–Tornquist Zone. Eventually the fault margins were overstepped, and paralic–marine deposition gradually resumed in most of the basin in Late Jurassic time. Thus, the facies architecture of the Norian – Lower Aalenian succession reflects eustatic or large-scale regional sea-level changes, whereas the Middle Aalenian – Volgian succession reflects a strong tectonic control that gradually gave way to more widespread and sea-level controlled sedimentation. The uplift of the Ringkøbing–Fyn High and most of the Danish Basin occurred concurrently with the uplift of the North Sea and a wide irregular uplifted area was formed, which differs significantly from the postulated domal pattern.


2016 ◽  
Vol 12 (6) ◽  
pp. 20160090 ◽  
Author(s):  
Sean M. Evans ◽  
Caroline McKenna ◽  
Stephen D. Simpson ◽  
Jennifer Tournois ◽  
Martin J. Genner

The Coral Triangle in the Indo-Pacific is a region renowned for exceptional marine biodiversity. The area could have acted as a ‘centre of origin’ where speciation has been prolific or a ‘centre of survival’ by providing refuge during major environmental shifts such as sea-level changes. The region could also have acted as a ‘centre of accumulation’ for species with origins outside of the Coral Triangle, owing to it being at a central position between the Indian and Pacific oceans. Here, we investigated support for these hypotheses using population-level DNA sequence-based reconstructions of the range evolution of 45 species (314 populations) of Indo-Pacific reef-associated organisms. Our results show that populations undergoing the most ancient establishment were significantly more likely to be closer to the centre of the Coral Triangle than to peripheral locations. The data are consistent with the Coral Triangle being a net source of coral-reef biodiversity for the Indo-Pacific region, suggesting that the region has acted primarily as a centre of survival, a centre of origin or both. These results provide evidence of how a key location can influence the large-scale distributions of biodiversity over evolutionary timescales.


2006 ◽  
Vol 43 (8) ◽  
pp. 1205-1214 ◽  
Author(s):  
André Desrochers

The upper Llandovery (Telychian) Chicotte Formation is a regionally extensive crinoid-rich unit exposed in the south-central part of Anticosti Island in the Gulf of St. Lawrence. The Chicotte encrinites represent an inner ramp, crinoidal sand-shoal complex (about 80 m thick) that prograded over deeper middle to outer ramp facies of the underlying Jupiter Formation in response to a long-term sea-level fall. The typical depositional unit in the Chicotte Formation is a metre-scale subtidal cycle indicating that higher frequency sea-level changes were also present. Metre-scale cycles are typically characterized by coarsening-upward, locally cross-bedded encrinitic material capped by a sharp erosional surface. These bounding surfaces change progressively upsection from simple planar to low-relief scalloped erosional surfaces to complex polyphase surfaces formed by distinct but superimposed erosional events. Three-dimensional paleomorphological features with local relief up to 50 m associated with erosional surfaces are exposed along coastal and river sections and in places have been partially exhumed by modern erosion along coastal exposures to expose a prominent intraformational unconformity. Paleolandforms include large-scale irregular sea stacks and shallow cliffs, similar to those present along modern rocky shorelines. Reefal limestones with small pockets of well-washed crinoidal sand and brachiopod banks form a narrow shoreline sediment wedge piled against the intra-Chicotte unconformity. The sea-level lowstand recorded within the Chicotte Formation coincides with a major sea-level lowstand recognized elsewhere on several continents during the early to middle Telychian time, indicating a eustatic rather than tectonic origin.


2018 ◽  
Author(s):  
Jamie R. Oaks ◽  
Cameron D. Siler ◽  
Rafe M. Brown

AbstractA primary goal of biogeography is to understand how large-scale environmental processes, like climate change, affect diversification One often-invoked but seldom tested process is the “species-pump” model, in which repeated bouts of co-speciation are driven by oscillating climate-induced habitat connectivity cycles. For example, over the past three million years, the landscape of the Philippine Islands has repeatedly coalesced and fragmented due to sea-level changes associated with glacial cycles. This repeated climate-driven vicariance has been proposed as a model of speciation across evolutionary lineages codistributed throughout the islands. This model predicts speciation times that are temporally clustered around the times when interglacial rises in sea level fragmented the islands. To test this prediction, we collected comparative genomic data from 16 pairs of insular gecko populations. We analyze these data in a full-likelihood, Bayesian model-choice framework to test for shared divergence times among the pairs. Our results provide support against the species-pump model prediction in favor of an alternative interpretation, namely that each pair of gecko populations diverged independently. These results suggest the repeated bouts of climate-driven landscape fragmentation has not been an important mechanism of speciation for gekkonid lizards on the Philippine Islands.


2017 ◽  
Vol 30 (6) ◽  
pp. 1881-1892 ◽  
Author(s):  
Carling C. Hay ◽  
Harriet C. P. Lau ◽  
Natalya Gomez ◽  
Jacqueline Austermann ◽  
Evelyn Powell ◽  
...  

Abstract Sea level fingerprints associated with rapid melting of the West Antarctic Ice Sheet (WAIS) have generally been computed under the assumption of a purely elastic response of the solid Earth. The authors investigate the impact of viscous effects on these fingerprints by computing gravitationally self-consistent sea level changes that adopt a 3D viscoelastic Earth model in the Antarctic region consistent with available geological and geophysical constraints. In West Antarctica, the model is characterized by a thin (~65 km) elastic lithosphere and sublithospheric viscosities that span three orders of magnitude, reaching values as low as approximately 4 × 1018 Pa s beneath WAIS. Calculations indicate that sea level predictions in the near field of WAIS will depart significantly from elastic fingerprints in as little as a few decades. For example, when viscous effects are included, the peak sea level fall predicted in the vicinity of WAIS during a melt event will increase by about 20% and about 50%, relative to the elastic case, for events of duration 25 and 100 yr, respectively. The results have implications for studies of sea level change due to both ongoing mass loss from WAIS over the next century and future, large-scale collapse of WAIS on centennial-to-millennial time scales.


Sign in / Sign up

Export Citation Format

Share Document