Excitability of the cortico-motoneuronal connections during preparation for a precise movement

1997 ◽  
Vol 103 (1) ◽  
pp. 123
Author(s):  
G Cossu
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoxia Song ◽  
Zhi Chen ◽  
Xue Zhang ◽  
Junfeng Xiong ◽  
Teng Jiang ◽  
...  

AbstractMagnetic micro/nanorobots attracted much attention in biomedical fields because of their precise movement, manipulation, and targeting abilities. However, there is a lack of research on intelligent micro/nanorobots with stimuli-responsive drug delivery mechanisms for cancer therapy. To address this issue, we developed a type of strong covalently bound tri-bead drug delivery microrobots with NIR photothermal response azobenzene molecules attached to their carboxylic surface groups. The tri-bead microrobots are magnetic and showed good cytocompatibility even when their concentration is up to 200 µg/mL. In vitro photothermal experiments demonstrated fast NIR-responsive photothermal property; the microrobots were heated to 50 °C in 4 min, which triggered a significant increase in drug release. Motion control of the microrobots inside a microchannel demonstrated the feasibility of targeted therapy on tumor cells. Finally, experiments with lung cancer cells demonstrated the effectiveness of targeted chemo-photothermal therapy and were validated by cell viability assays. These results indicated that tri-bead microrobots have excellent potential for targeted chemo-photothermal therapy for lung cancer cell treatment.


Author(s):  
C. Koetsier ◽  
T. Peters ◽  
M. Sester

Abstract. Estimating vehicle poses is crucial for generating precise movement trajectories from (surveillance) camera data. Additionally for real time applications this task has to be solved in an efficient way. In this paper we introduce a deep convolutional neural network for pose estimation of vehicles from image patches. For a given 2D image patch our approach estimates the 2D coordinates of the image representing the exact center ground point (cx, cy) and the orientation of the vehicle - represented by the elevation angle (e) of the camera with respect to the vehicle’s center ground point and the azimuth rotation (a) of the vehicle with respect to the camera. To train a accurate model a large and diverse training dataset is needed. Collecting and labeling such large amount of data is very time consuming and expensive. Due to the lack of a sufficient amount of training data we show furthermore, that also rendered 3D vehicle models with artificial generated textures are nearly adequate for training.


2014 ◽  
Vol 1036 ◽  
pp. 662-667
Author(s):  
Iulian Stǎnǎşel ◽  
Florin Blaga ◽  
Traian Buidoş

Geneva mechanism is used as a mechanism for transforming rotary motion into intermittent motion and is able to achieve a precise movement and its lock, which makes it usable in many areas, particularly in timer devices, measurement devices, feed mechanisms, positioning mechanisms, pick-up and transport machinery, textile machinery etc. The studied literature showed that, although it has long been known, this mechanism is still interesting for contemporary researchers. The present paper proposes a method of synthesis and a computer-aided kinematic and dynamic analysis for this mechanism. Based on input data, it was developed a computer program that computes the dimensions of components of Geneva mechanism and determines velocity acceleration and displacement of Geneva wheel. The dimensional calculated data were also used to obtain 3D model of the mechanism.


Author(s):  
Mingxuan Fan ◽  
Yuksel Agca ◽  
John Critser ◽  
Z. C. Feng

Intracytoplasmic Sperm Injection (ICSI) is regarded as one of the most useful assisted reproductive technology (ART). During ICSI, a single spermatozoon is mechanically injected into cytoplasm of an oocyte using a glass needle, called a micro-injection pipette. The micro-injection pipette is usually controlled by a micromanipulator for the precise movement. In the case of rodent ICSI the Piezo-driven pipette is needed. However, one undesirable aspect of the Piezo-driven pipette is that the technicians have to use mercury in the micro-injection pipette in order to achieve consistent results. It is commonly held that the large density of mercury strongly affects the pipette vibration. In this work, we analyze the effect of mercury on the vibration characteristics of the Piezo-driven pipette. The pipette is modeled as a cantilever beam immersed in a viscous liquid. The forces on the pipette by the surrounding liquid include both inertial force and viscous force. The steady state response of the pipette is obtained by the finite element method together with the numerical integration method. We investigate the pipette dynamic responses when different fluids are used as the plug inside the pipette and as the fluid surrounding the pipette. Based on the analysis, we conclude that the effect mercury has on the vibration is not the main reason that it facilitates the ICSI.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6107
Author(s):  
Bogdan Bednarski ◽  
Krzysztof Jackiewicz ◽  
Andrzej Gałecki

Stepper motors are widely used in many applications where discrete, precise movement is required. There is a variety of dedicated stepper motor controllers (sometimes referred to as “step sticks”) available on the market. Those controllers provide a number of different motor control schemes that vary by aspects like current control method, reference current shape or maximum resolution increase (microstepping). The two most widely acknowledged signal shapes are sine-cosine microstepping and quadrature microstepping. The choice of the control scheme impacts torque output, torque variation, positioning error and maximum power supply requirements. This paper presents a family of generalised microstepping signal shapes, ranging from sine-cosine microstepping to quadrature microstepping. Derivation of signal shapes as well as their mathematical analyses are provided. Those signals are then implemented on the control board. A series of experiments is performed on a test bench to analyse the influence of different signal shapes on the performance of the motor in both load and no load conditions. The comparison of the new generalized shapes influence on the motor operation to the commonly used sine-cosine and quadrature control is provided.


2020 ◽  
Vol 2 (7(76)) ◽  
pp. 21-26
Author(s):  
Volodya Dzharov

This paper explores patterns of electronic beam movement by controlling the transverse axis of the bundle of the uniform magnetic field generated by the coils of the electronic gun. For electron beam processes, the type of process, the technological mode, the design dimensions of the electronic gun, and the shape of the machined parts determines beam motion. The free and precise movement on random trajectories determines the possible applications of the electron beam process in performing various scientific experiments on material processing.


2021 ◽  
Author(s):  
Nicholas J Audette ◽  
WenXi Zhou ◽  
David M Schneider

Many of the sensations experienced by an organism are caused by their own actions, and accurately anticipating both the sensory features and timing of self-generated stimuli is crucial to a variety of behaviors. In the auditory cortex, neural responses to self-generated sounds exhibit frequency-specific suppression, suggesting that movement-based predictions may be implemented early in sensory processing. Yet it remains unknown whether this modulation results from a behaviorally specific and temporally precise prediction, nor is it known whether corresponding expectation signals are present locally in the auditory cortex. To address these questions, we trained mice to expect the precisely timed acoustic outcome of a forelimb movement using a closed-loop sound-generating lever. Dense neuronal recordings in the auditory cortex revealed suppression of responses to self-generated sounds that was specific to the expected acoustic features, specific to a precise time within the movement, and specific to the movement that was coupled to sound during training. Predictive suppression was concentrated in L2/3 and L5, where deviations from expectation also recruited a population of prediction-error neurons that was otherwise unresponsive. Recording in the absence of sound revealed abundant movement signals in deep layers that were biased toward neurons tuned to the expected sound, as well as temporal expectation signals that were present throughout the cortex and peaked at the time of expected auditory feedback. Together, these findings reveal that predictive processing in the mouse auditory cortex is consistent with a learned internal model linking a specific action to its temporally precise acoustic outcome, while identifying distinct populations of neurons that anticipate expected stimuli and differentially process expected versus unexpected outcomes.


2011 ◽  
Vol 487 ◽  
pp. 478-481
Author(s):  
Rong Guo Hou ◽  
Chuan Zhen Huang ◽  
H.T. Zhu ◽  
H.L. Liu ◽  
B. Zou

A floor typed spatial robot of abrasive water jet machining is designed, which can be applied to machine three-dimensional complicated work-pieces. Its merits are simple structure and flexible moving. The structure and transmission programmer are discussed in detail. The working range of the abrasive water jet robot is analyzed to meet the need of the various sized work-pieces. The motion of the each joint is realized by means of various transmission programmers. The precise movement of the robot is realized by the stepping motor, and the required power of the robot is calculated.


Sign in / Sign up

Export Citation Format

Share Document