Insertion of a SNS-specific tetrapeptide in S3-S4 linker of D4 accelerates recovery from inactivation of skeletal muscle voltage-gated Na channel μ1 in HEK293 cells

FEBS Letters ◽  
1997 ◽  
Vol 416 (1) ◽  
pp. 11-14 ◽  
Author(s):  
S.D Dib-Hajj ◽  
K Ishikawa ◽  
T.R Cummins ◽  
S.G Waxman
1998 ◽  
Vol 76 (10-11) ◽  
pp. 1041-1050 ◽  
Author(s):  
Michael E O'Leary

Human heart (hH1), human skeletal muscle (hSkM1), and rat brain (rIIA) Na channels were expressed in cultured cells and the activation and inactivation of the whole-cell Na currents measured using the patch clamp technique. hH1 Na channels were found to activate and inactivate at more hyperpolarized voltages than hSkM1 and rIIA. The conductance versus voltage and steady state inactivation relationships have midpoints of -48 and -92 mV (hH1), -28 and -72 mV (hSkM1), and -22 and -61 mV (rIIA). At depolarized voltages, where Na channels predominately inactivate from the open state, the inactivation of hH1 is 2-fold slower than that of hSkM1 and rIIA. The recovery from fast inactivation of all three isoforms is well described by a single rapid component with time constants at -100 mV of 44 ms (hH1), 4.7 ms (hSkM1), and 7.6 ms (rIIA). After accounting for differences in voltage dependence, the kinetics of activation, inactivation, and recovery of hH1 were found to be generally slower than those of hSkM1 and rIIA. Modeling of Na channel gating at hyperpolarized voltages where the channel does not open suggests that the slow rate of recovery from inactivation of hH1 accounts for most of the differences in the steady-state inactivation of these Na channels.Key words: cardiac, neuronal, skeletal muscle, sodium channel.


1997 ◽  
Vol 110 (6) ◽  
pp. 693-715 ◽  
Author(s):  
Ye-Ming Sun ◽  
Isabelle Favre ◽  
Laurent Schild ◽  
Edward Moczydlowski

Recent evidence indicates that ionic selectivity in voltage-gated Na+ channels is mediated by a small number of residues in P-region segments that link transmembrane elements S5 and S6 in each of four homologous domains denoted I, II, III, and IV. Important determinants for this function appear to be a set of conserved charged residues in the first three homologous domains, Asp(I), Glu(II), and Lys(III), located in a region of the pore called the DEKA locus. In this study, we examined several Ala-substitution mutations of these residues for alterations in ionic selectivity, inhibition of macroscopic current by external Ca2+ and H+, and molecular sieving behavior using a series of organic cations ranging in size from ammonium to tetraethylammonium. Whole-cell recording of wild-type and mutant channels of the rat muscle μ1 Na+ channel stably expressed in HEK293 cells was used to compare macroscopic current–voltage behavior in the presence of various external cations and an intracellular reference solution containing Cs+ and very low Ca2+. In particular, we tested the hypothesis that the Lys residue in domain III of the DEKA locus is responsible for restricting the permeation of large organic cations. Mutation of Lys(III) to Ala largely eliminated selectivity among the group IA monovalent alkali cations (Li+, Na+, K+, Rb+, Cs+) and permitted inward current of group IIA divalent cations (Mg2+, Ca2+, Sr2+, Ba2+). This same mutation also resulted in the acquisition of permeability to many large organic cations such as methylammonium, tetramethylammonium, and tetraethylammonium, all of which are impermeant in the native channel. The results lead to the conclusion that charged residues of the DEKA locus play an important role in molecular sieving behavior of the Na+ channel pore, a function that has been previously attributed to a hypothetical region of the channel called the “selectivity filter.” A detailed examination of individual contributions of the Asp(I), Glu(II), and Lys(III) residues and the dependence on molecular size suggests that relative permeability of organic cations is a complex function of the size, charge, and polarity of these residues and cation substrates. As judged by effects on macroscopic conductance, charged residues of the DEKA locus also appear to play a role in the mechanisms of block by external Ca2+ and H+, but are not essential for the positive shift in activation voltage that is produced by these ions.


1997 ◽  
Vol 272 (2) ◽  
pp. C592-C600 ◽  
Author(s):  
S. Bendahhou ◽  
T. R. Cummins ◽  
W. S. Agnew

Voltage-gated rat skeletal muscle and cardiac Na+ channels are modulated by exogenous unsaturated fatty acids. Application of 1-10 microM arachidonic or oleic acids reversibly depressed Na+ channel conductance and shifted the inactivation curve to hyperpolarizing potentials. These effects were not prevented by inhibitors of lipoxygenase, cyclooxygenase, cytochrome P-450 epoxygenase, or protein kinase C. Neither palmitic acid nor methyl ester oleate had an effect on the inward Na+ current, suggesting that trivial variations in membrane fluidity are not responsible for the Na+ current depression or kinetic changes. Arachidonic acid altered fast Na+ inactivation without changing the slow inactivation kinetics. Moreover, skeletal muscle Na+ channel gating currents were markedly decreased by 2 microM arachidonic acid. Finally, nonstationary noise analysis indicated that both the number of channels and the open probability were slightly decreased without change in the single-channel conductance. These data suggest that unsaturated fatty acids such as arachidonic and oleic acids 1) specifically regulate voltage-gated Na+ channels and 2) interact directly with Na+ channels, perhaps at a fatty acid binding domain, by decreasing the total gating charge and altering fast-inactivation kinetics.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1516
Author(s):  
Daniel Gratz ◽  
Alexander J Winkle ◽  
Seth H Weinberg ◽  
Thomas J Hund

The voltage-gated Na+ channel Nav1.5 is critical for normal cardiac myocyte excitability. Mathematical models have been widely used to study Nav1.5 function and link to a range of cardiac arrhythmias. There is growing appreciation for the importance of incorporating physiological heterogeneity observed even in a healthy population into mathematical models of the cardiac action potential. Here, we apply methods from Bayesian statistics to capture the variability in experimental measurements on human atrial Nav1.5 across experimental protocols and labs. This variability was used to define a physiological distribution for model parameters in a novel model formulation of Nav1.5, which was then incorporated into an existing human atrial action potential model. Model validation was performed by comparing the simulated distribution of action potential upstroke velocity measurements to experimental measurements from several different sources. Going forward, we hope to apply this approach to other major atrial ion channels to create a comprehensive model of the human atrial AP. We anticipate that such a model will be useful for understanding excitability at the population level, including variable drug response and penetrance of variants linked to inherited cardiac arrhythmia syndromes.


Biochemistry ◽  
1998 ◽  
Vol 37 (13) ◽  
pp. 4407-4419 ◽  
Author(s):  
Nancy S. Chang ◽  
Robert J. French ◽  
Gregory M. Lipkind ◽  
Harry A. Fozzard ◽  
Samuel Dudley
Keyword(s):  

2009 ◽  
Vol 9 (Suppl 2) ◽  
pp. A25
Author(s):  
René Cervenka ◽  
Touran Zarrabi ◽  
Péter Lukács ◽  
Xaver König ◽  
Karlheinz Hilber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document