NO oxidation over activated carbon fiber (ACF). Part 1. Extended kinetics over a pitch based ACF of very large surface area

Fuel ◽  
2000 ◽  
Vol 79 (14) ◽  
pp. 1713-1723 ◽  
Author(s):  
I Mochida ◽  
N Shirahama ◽  
S Kawano ◽  
Y Korai ◽  
A Yasutake ◽  
...  
2012 ◽  
Vol 209-211 ◽  
pp. 1990-1994 ◽  
Author(s):  
Qin Zhang ◽  
Zhao Hui Zhang ◽  
Liang Wang ◽  
Zi Long Zhang ◽  
Xing Fei Guo

The properties of four different activated carbon fiber cloth (ACF), such as specific surface area, pore volumes and pore size distribution, were evaluated. The relationship between ACF properties and its electrosorption performance was analyzed. The experimental results show that pore structure has more influence on the performance of ACF electrode than that of specific surface area for ACF material. More abundant mesopores and shallower pore channels for ACF is favorable to improve the specific capacitance and electrosorption capacity of ions.


2012 ◽  
Vol 503-504 ◽  
pp. 646-649
Author(s):  
Xiao Ling Guo ◽  
Xiang Dong Wang ◽  
De Ping Ben

Nano-TiO2 powders were synthesized by a sol-gel method using tetrabutyl titanate as the precursor, and then the composites of ACF(activated carbon fiber) supported nano-TiO2 was prepared by impregnating method. Tests of the amount of loaded TiO2 showed that three impregnating times was adequate. The Nano-TiO2 powders and composites were characterized by XRD, SEM, and BET surface area method. XRD tests showed that nano-TiO2 powders prepared by this way are anatase phase, and the mean size of the particles is about 11.5nm, when the calcination temperature is 673K. BET results showed that compared with original ACF, the surface area of the composites decreased slightly, indicating the impregnating process did not change the porous structure of original ACF. SEM result indicated that most of the nano-TiO2 particles as the size of 10-20nm were homogeneously dispersed on the surface of ACF.


2020 ◽  
Vol 42 (6) ◽  
pp. 289-297
Author(s):  
Eunbyul Lee ◽  
Jonggu Kim ◽  
Byungtae Yoo

Objectives:A paper filter was prepared by pitch based activated carbon fibers to investigate the removal efficiency of toxic gas. Also, changes in pore characteristics and mechanical properties according to the ratio of the adsorbent and the binder were observed to optimize the decrease in specific surface area and micropore, which are the unique characteristics of activated carbon fibers. In addition, it is intended to establish optimized paper filter derived activated carbon fiber manufacturing conditions through evaluation of toxic gas removal characteristics.Methods:The pore characteristics of the activated carbon fiber and prepared paper were analyzed by measuring the BET specific surface area, and SEM analysis was performed on the fine surface shape. Tensile strength and air permeability were performed according to ISO 1924-2 and ASTM D737: 04, respectively. The adsorption performance of the prepared filter was evaluated as a gas removal efficiency using a gas detection tube (GV-110S).Results and Discussion:As the content of the binder increased in the paper manufacturing process, it was confirmed that the specific surface area of ​​the prepared filter decreased by up to 39.5% compared to the activated carbon fiber. It is considered that the micropores were closed because the surface of the activated carbon fiber was coated with the excessive addition of the binder. The removal efficiency showed a removal rate of 90% of ammonia, and methyl mercaptan and hydrogen sulfide showed a removal rate of about 60%. This result might be due to the difference in the physical adsorption rate according to the vapor pressure of each material.Conclusions:An activated carbon fiber-based paper filter for removing of toxic gas was prepared. It was confirmed that the mixing ratio of the adsorbent and the binder was an important process parameter for determining moldability and adsorption performance. Finally, optimum condition was selected as weight ratio condition of 8:2.


2021 ◽  
Vol 13 (9) ◽  
pp. 4729
Author(s):  
Borhan Albiss ◽  
Muna Abu-Dalo

In this work, the synthesis, characterization, and photocatalytic performance of zinc oxide/activated carbon fiber nanocomposites prepared by hydrothermal method were investigated. Zinc oxide nanoparticles (ZnO-NP) were deposited as seeds on porous activated carbon fiber (ACF) substrates. Then, zinc oxide nanorods (ZnO-NR) were successfully grown on the seeds and assembled on the fibers’ surface in various patterns to form ZnO-NR/ACF nanocomposites. The nanocomposites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrometry, UV–vis diffuse reflectance spectra (DRS), and Brunauer–Emmett–Teller (BET) surface area analysis. SEM images showed that brush-like and flower-like ZnO-NR patterns were grown uniformly on the ACF surface with sizes depending on the ZnO-NP concentration, growth time, and temperature. The FTIR spectrum confirmed the presence of the major vibration bands, especially the absorption peaks representing the vibration modes of the COOH (C = O and C = C) functional group. Adsorption and photocatalytic activities of the synthesized catalytic adsorbents were compared using methylene blue (MB) as the model pollutant under UV irradiation. ZnO-NR/ACF nanocomposites showed excellent photocatalytic activity (~99% degradation of MB in 2 h) compared with that of bare ZnO-NR and ACF. Additionally, a recycling experiment demonstrated the stability of the catalyst; the catalytic degradation ratio of ZnO-NR/ACF reached more than 90% after five successive runs and possessed strong adsorption capacity and high photocatalytic ability. The enhanced photocatalytic activities may be related to the effects of the relatively high surface area, enhanced UV-light absorption, and decrease of charge carrier recombination resulting from the synergetic adsorption–photocatalytic degradation effect of ZnO and ACF.


2011 ◽  
Vol 480-481 ◽  
pp. 6-10
Author(s):  
Yan Feng Yang ◽  
Xue Jun Zhang ◽  
Hai Yan Li

General purpose pitch-based carbon fiber (PCF) was pretreated with steam to develop pores on the surface of fiber. After immersed in cobalt salt solution, PCF was used as raw materials to prepare activated carbon fiber (ACF) through steam activation process. The effect of pretreatment of carbon fiber on specific surface area, mesopore volume and pore size distribution was investigated by N2 adsorption, and morphology of the resultant ACF was observed with scanning electron microscope(SEM). The results show that pretreatment of PCF enlarges specific surface area and mesopore ratio of ACF remarkably. The best ACF obtained in experiment is the one with specific surface area of 2670 m2/g and mesoporosity of 61.8%. Cobalt has evident catalysis in preparing ACF from activation of PCF, while specific surface area and pore size of ACF get smaller with cobalt salt immersion when pretreatment is too strong.


Sign in / Sign up

Export Citation Format

Share Document