37 Cellular Iron Drives In Vitro Proliferation and Migration in Colorectal Adenocarcinoma

2008 ◽  
Vol 134 (4) ◽  
pp. A-5
Author(s):  
Matthew J. Brookes ◽  
Keith Roberts ◽  
Tariq Iqbal ◽  
Chris Tselepis
2018 ◽  
Vol 6 (5) ◽  
pp. 1076-1083 ◽  
Author(s):  
Aline Zbinden ◽  
Shane Browne ◽  
Eda I. Altiok ◽  
Felicia L. Svedlund ◽  
Wesley M. Jackson ◽  
...  

Multivalent growth factor conjugates hold great promise for regenerative therapies.


2021 ◽  
Vol 8 (1) ◽  
pp. 24
Author(s):  
Tie-ning Zhang ◽  
Quan Li ◽  
Te Ba ◽  
Tian-xi Shao ◽  
Fang Li ◽  
...  

Objective: To observe the effects of platelet-rich plasma (PRP) on in vitro proliferation and migration of fibroblasts from human chronic refractory wound granulation tissue.Methods: Fibroblasts were separated from human chronic refractory wound granulation tissue and then were identified. The obtained fibroblasts were divided into fetal bovine serum (FBS) group, hydrogel group and PRP group, and the three groups were cultured with culture mediums containing FBS, hydrogel and PRP respectively, in order to observe the growth of fibroblasts. The wound scratch assay was used to observe the migration of fibroblasts.Results: PRP group had more fibroblasts than FBS group and hydrogel group since Day 5 of culture, and exhibited greater fibroblast scratch migration area than FBS group on 48 h and 72 h of wound scratch assay (all p < .05).Conclusions: Compared with FBS, human fibroblasts cultured by PRP can more effectively promote the proliferation and migration of fibroblasts.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Jianye Xu ◽  
Jian Zhang ◽  
Zongpu Zhang ◽  
Zijie Gao ◽  
Yanhua Qi ◽  
...  

AbstractExosomes participate in intercellular communication and glioma microenvironment modulation, but the exact mechanisms by which glioma-derived exosomes (GDEs) promote the generation of the immunosuppressive microenvironment are still unclear. Here, we investigated the effects of GDEs on autophagy, the polarization of tumor-associated macrophages (TAMs), and glioma progression. Compared with normoxic glioma-derived exosomes (N-GDEs), hypoxic glioma-derived exosomes (H-GDEs) markedly facilitated autophagy and M2-like macrophage polarization, which subsequently promoted glioma proliferation and migration in vitro and in vivo. Western blot and qRT-PCR analyses indicated that interleukin 6 (IL-6) and miR-155-3p were highly expressed in H-GDEs. Further experiments showed that IL-6 and miR-155-3p induced M2-like macrophage polarization via the IL-6-pSTAT3-miR-155-3p-autophagy-pSTAT3 positive feedback loop, which promotes glioma progression. Our study clarifies a mechanism by which hypoxia and glioma influence autophagy and M2-like macrophage polarization via exosomes, which could advance the formation of the immunosuppressive microenvironment. Our findings suggest that IL-6 and miR-155-3p may be novel biomarkers for diagnosing glioma and that treatments targeting autophagy and the STAT3 pathway may contribute to antitumor immunotherapy.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenghui Cheng ◽  
Yawen Zhang ◽  
Yinchao Tian ◽  
Yuhan Chen ◽  
Fei Ding ◽  
...  

Abstract Background Schwann cells (SCs) play a crucial role in the repair of peripheral nerves. This is due to their ability to proliferate, migrate, and provide trophic support to axon regrowth. During peripheral nerve injury, SCs de-differentiate and reprogram to gain the ability to repair nerves. Cysteine-rich 61 (Cyr61/CCN1) is a member of the CCN family of matrix cell proteins and have been reported to be abundant in the secretome of repair mediating SCs. In this study we investigate the function of Cyr61 in SCs. Results We observed Cyr61 was expressed both in vivo and in vitro. The promoting effect of Cyr61 on SC proliferation and migration was through autocrine and paracrine mechanisms. SCs expressed αvβ3 integrin and the effect of Cyr61 on SC proliferation and migration could be blocked via αvβ3 integrin. Cyr61 could influence c-Jun protein expression in cultured SCs. Conclusions In this study, we found that Cyr61 promotes SC proliferation and migration via αvβ3 integrin and regulates c-Jun expression. Our study contributes to the understanding of cellular and molecular mechanisms underlying SC’s function during nerve injury, and thus, may facilitate the regeneration of peripheral nerves after injury.


Sign in / Sign up

Export Citation Format

Share Document