Tu1985 Loss of Integrin β6 (ITGB6) Protects From Colon Cancer Development In Vivo

2015 ◽  
Vol 148 (4) ◽  
pp. S-953
Author(s):  
Susan Bengs ◽  
Marianne R. Spalinger ◽  
Stephanie Kasper ◽  
Silvia Lang ◽  
Isabelle Frey-Wagner ◽  
...  
2017 ◽  
Vol 6 (3) ◽  
pp. 511-520 ◽  
Author(s):  
Qian Lin ◽  
Leina Ma ◽  
Dong Wang ◽  
Zhihong Yang ◽  
Jin Wang ◽  
...  

2021 ◽  
Vol 17 ◽  
Author(s):  
Meenu Bhatiya ◽  
Surajit Pathak ◽  
Antara Banerjee

Background: Colon cancer is the third leading cause of cancer-related deaths worldwide. Colon tumorigenesis is a sequential process called “Adenoma-carcinoma sequence”. The alimentary habits, obesity, heavy alcohol consumption, inflammatory bowel diseases, family history of colon cancer, oxidative stress, and cellular senescence are the major risk factor influencing colon cancer development. Senescence contributes to the aging process as well as in the development and progression of colon cancer. However, the precise mechanism underlying the aging-related progress of colon cancer is yet to be answered. Recent studies proposed that the senescent cell secretes Senescence-Associated Secretory Phenotype (SASP) includes pro-inflammatory cytokines, interleukins, growth factors, and proteases actively involved in the creation of pro-tumorigenic microenvironment. Objective: This review aims to provide an overview of ROS influence cellular senescence and colon cancer development and summarize the antioxidant and antiaging activity of natural flavonoids. Many of the studies had reported that pro-aging genes were suppressed cancer, and various ‘markers’ are used to identify senescent cells in vitro and in vivo. The SASP of the cells may act as a link between senescence and cancer. Conclusion: This review facilitates a better understanding and might contribute to diagnostic and prognostic systems and find out the novel and targeted therapeutic approaches. Additionally, we focused on the potential role of natural flavonoids in colon cancer therapies, highlighting the flavonoid-based treatments as innovative immunomodulatory strategies to inhibit the growth of colon cancer.


Author(s):  
Dr. Joanne R. Lupton ◽  
Dr. Nancy D. Turner ◽  
Dr. Leslie Braby ◽  
Dr. John Ford ◽  
Dr. Raymond J. Carroll ◽  
...  

2018 ◽  
Vol 18 (7) ◽  
pp. 985-992 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Ertan Kucuksayan ◽  
Rana Cagla Akduman ◽  
Tomris Ozben

This systematic review aims to elucidate the role of melatonin (N-acetyl-5-metoxy-tryptamine) (MLT) in the prevention and treatment of cancer. MLT is a pineal gland secretory product, an evolutionarily highly conserved molecule; it is also an antioxidant and an impressive protector of mitochondrial bioenergetic activity. MLT is characterized by an ample range of activities, modulating the physiology and molecular biology of the cell. Its physiological functions relate principally to the interaction of G Protein-Coupled MT1 and MT2 trans-membrane receptors (GPCRs), a family of guanidine triphosphate binding proteins. MLT has been demonstrated to suppress the growth of various tumours both, in vivo and in vitro. In this review, we analyze in depth, the antioxidant activity of melatonin, aiming to illustrate the cancer treatment potential of the molecule, by limiting or reversing the changes occurring during cancer development and growth.


2020 ◽  
Vol 10 ◽  
Author(s):  
Aditya Nath Pandey ◽  
Kuldeep Rajpoot ◽  
Sunil K. Jain

Background:: Several studies have suggested potential aptitude of polylactic-co-glycolic acid (PLGA)-derived nanoparticles (NPs) to improve the antitumor efficacy of anticancer drugs against colon cancer. Further, conjugation of lectins over the surface of the NPs may ameliorate interaction and thus enhance attachment of NPs with receptors. Objective:: The main goal of the study was to prepare and evaluate targeting potential (in vivo) of the optimized NPs against colorectal cancer. Methods:: The 5-fluorouracil (5-FU) loaded and wheat germ agglutinin (WGA)-conjugated PLGA-NPs (WFUNPs) were prepared and then they were evaluated in vivo for targeting aptitude of formulation using gamma scintigraphy after oral delivery. The WGA-conjugated and non-conjugated optimized NPs were compared for any significant results. Further, optimized formulations were also assessed for different parameters such as radiolabeling efficiency, sodium pertechnetate uptake, stability of NPs, and organ distribution study. Results:: Findings suggested prolonged retention of 99mTc-tagged WFUNPs in the colonic region after 24 h study. Eventually, the outcome from conjugated formulation revealed enhanced bioavailability of the drug in blood plasma for up to 24 h. Conclusion:: In conclusion, WGA-conjugation to NPs could improve the performance of the PLGA-NPs in the treatment of colorectal cancer.


2021 ◽  
Vol 129 (5) ◽  
pp. 053301
Author(s):  
Eric Freund ◽  
Lea Miebach ◽  
Ramona Clemen ◽  
Michael Schmidt ◽  
Amanda Heidecke ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 942
Author(s):  
Mei Qi Kwa ◽  
Rafael Brandao ◽  
Trong H. Phung ◽  
Jianfeng Ge ◽  
Giuseppe Scieri ◽  
...  

MRCKα is a ubiquitously expressed serine/threonine kinase involved in cell contraction and F-actin turnover, which is highly amplified in human breast cancer and part of a gene expression signature for bad prognosis. Nothing is known about the in vivo function of MRCKα. To explore MRCKα function in development and in breast cancer, we generated mice lacking a functional MRCKα gene. Mice were born close to the Mendelian ratio and showed no obvious phenotype including a normal mammary gland formation. Assessing breast cancer development using the transgenic MMTV-PyMT mouse model, loss of MRCKα did not affect tumor onset, tumor growth and metastasis formation. Deleting MRCKα and its related family member MRCKβ in two triple-negative breast cancer cell lines resulted in reduced invasion of MDA-MB-231 cells, but did not affect migration of 4T1 cells. Further genomic analysis of human breast cancers revealed that MRCKα is frequently co-amplified with the oncogenes ARID4B and AKT3 which might contribute to the prognostic value of MRCKα expression. Collectively, these data suggest that MRCKα might be a prognostic marker for breast cancer, but probably of limited functional importance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazim Husain ◽  
Domenico Coppola ◽  
Chung S. Yang ◽  
Mokenge P. Malafa

AbstractThe activation and growth of tumour-initiating cells with stem-like properties in distant organs characterize colorectal cancer (CRC) growth and metastasis. Thus, inhibition of colon cancer stem cell (CCSC) growth holds promise for CRC growth and metastasis prevention. We and others have shown that farnesyl dimethyl chromanol (FDMC) inhibits cancer cell growth and induces apoptosis in vitro and in vivo. We provide the first demonstration that FDMC inhibits CCSC viability, survival, self-renewal (spheroid formation), pluripotent transcription factors (Nanog, Oct4, and Sox2) expression, organoids formation, and Wnt/β-catenin signalling, as evidenced by comparisons with vehicle-treated controls. In addition, FDMC inhibits CCSC migration, invasion, inflammation (NF-kB), angiogenesis (vascular endothelial growth factor, VEGF), and metastasis (MMP9), which are critical tumour metastasis processes. Moreover, FDMC induced apoptosis (TUNEL, Annexin V, cleaved caspase 3, and cleaved PARP) in CCSCs and CCSC-derived spheroids and organoids. Finally, in an orthotopic (cecum-injected CCSCs) xenograft metastasis model, we show that FDMC significantly retards CCSC-derived tumour growth (Ki-67); inhibits inflammation (NF-kB), angiogenesis (VEGF and CD31), and β-catenin signalling; and induces apoptosis (cleaved PARP) in tumour tissues and inhibits liver metastasis. In summary, our results demonstrate that FDMC inhibits the CCSC metastatic phenotype and thereby supports investigating its ability to prevent CRC metastases.


Sign in / Sign up

Export Citation Format

Share Document