Influence of alveolar bone loss, post type, and ferrule presence on the biomechanical behavior of endodontically treated maxillary canines: Strain measurement and stress distribution

2013 ◽  
Vol 110 (2) ◽  
pp. 116-126 ◽  
Author(s):  
Marina Guimarães Roscoe ◽  
Pedro Yoshito Noritomi ◽  
Veridiana Resende Novais ◽  
Carlos José Soares
2012 ◽  
Vol 512-515 ◽  
pp. 1770-1774
Author(s):  
Ya Gao ◽  
Long Quan Shao ◽  
Bang Lian Deng ◽  
Shan Yu Zhou ◽  
Yuan Fu Yi ◽  
...  

To investigate the influence of alveolar bone loss and post design on stress distribution of a severely damaged canine. The residual canal dentin wall in the cervical region was standardized at 0.5mm in thickness. Twelve two-dimensional finite element models were created. The models were varied in their alveolar bone loss. The post systems include computer-aided design/computer-aided manufacturing zirconium post, prefabricated glass fiber post, cast stainless steel post, and cast gold post. The numerical models were considered to be restored with an all-ceramic crown. A load of 100N was applied to the crown at an angle of 45 degree on the lingual surface, and Mises stresses were calculated. Finite element analysis revealed that cast stainless steel post system showed the lowest maximum Mises stress in the dentine at 86.46 MPa, while, glass fiber post resulted in the highest stress concentration in the dentin at 174.3 MPa. Stresses were reduced by increasing alveolar height. Loss of alveolar bone loss may lead to an increased risk of failure.


2016 ◽  
Vol 4 (4) ◽  
pp. 947-955
Author(s):  
Sneha R Bhat ◽  
◽  
Aravind R Kudva ◽  
Dhoom S Mehta ◽  
◽  
...  

Author(s):  
Ozkan Karatas ◽  
Fikret Gevrek

Background: 3,4,5-Trihydroxybenzoic acid, which is also known as gallic acid, is an anti-inflammatory agent who could provide beneficial effects in preventing periodontal inflammation. The present study aimed to evaluate the anti-inflammatory effects of gallic acid on experimental periodontitis in Wistar rats. Alveolar bone loss, osteoclastic activity, osteoblastic activity, and collagenase activity were also determined. Methods: 32 Wistar rats were used in the present study. Study groups were created as following: Healthy control (C,n=8) group; periodontitis (P,n=8) group; periodontitis and 30 mg/kg gallic acid administered group (G30,n=8); periodontitis and 60 mg/kg gallic acid administered group (G60,n=8). Experimental periodontitis was created by placing 4-0 silk sutures around the mandibular right first molar tooth. Morphological changes in alveolar bone were determined by stereomicroscopic evaluation. Mandibles were undergone histological evaluation. Matrix metalloproteinase (MMP)-8, tissue inhibitor of MMPs (TIMP)-1, bone morphogenetic protein (BMP)-2 expressions, tartrate-resistant acid phosphatase (TRAP) positive osteoclast cells, osteoblast, and inflammatory cell counts were determined. Results: Highest alveolar bone loss was observed in the periodontitis group. Both doses of gallic acid decreased alveolar bone loss compared to the P group. TRAP-positive osteoclast cell counts were higher in the P group, and gallic acid successfully lowered these counts. Osteoblast cells also increased in gallic acid administered groups. Inflammation in the P group was also higher than those of C, G30, and G60 groups supporting the role of gallic acid in preventing inflammation. 30 and 60 mg/kg doses of gallic acid decreased MMP-8 levels and increased TIMP-1 levels. BMP levels increased in gallic acid administered groups, similar to several osteoblasts. Conclusion: Present results revealed an anti-inflammatory effect of gallic acid, which was indicated by decreased alveolar bone loss and collagenase activity and increased osteoblastic activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tsukasa Tominari ◽  
Ayumi Sanada ◽  
Ryota Ichimaru ◽  
Chiho Matsumoto ◽  
Michiko Hirata ◽  
...  

AbstractPeriodontitis is an inflammatory disease associated with severe alveolar bone loss and is dominantly induced by lipopolysaccharide from Gram-negative bacteria; however, the role of Gram-positive bacteria in periodontal bone resorption remains unclear. In this study, we examined the effects of lipoteichoic acid (LTA), a major cell-wall factor of Gram-positive bacteria, on the progression of inflammatory alveolar bone loss in a model of periodontitis. In coculture of mouse primary osteoblasts and bone marrow cells, LTA induced osteoclast differentiation in a dose-dependent manner. LTA enhanced the production of PGE2 accompanying the upregulation of the mRNA expression of mPGES-1, COX-2 and RANKL in osteoblasts. The addition of indomethacin effectively blocked the LTA-induced osteoclast differentiation by suppressing the production of PGE2. Using ex vivo organ cultures of mouse alveolar bone, we found that LTA induced alveolar bone resorption and that this was suppressed by indomethacin. In an experimental model of periodontitis, LTA was locally injected into the mouse lower gingiva, and we clearly detected alveolar bone destruction using 3D-μCT. We herein demonstrate a new concept indicating that Gram-positive bacteria in addition to Gram-negative bacteria are associated with the progression of periodontal bone loss.


Nutrients ◽  
2014 ◽  
Vol 6 (12) ◽  
pp. 5853-5870 ◽  
Author(s):  
Zhiguo Zhang ◽  
Lihua Xiang ◽  
Dong Bai ◽  
Wenlai Wang ◽  
Yan Li ◽  
...  

2021 ◽  
Author(s):  
Leming Jia ◽  
Ye Tu ◽  
Xiaoyue Jia ◽  
Qian Du ◽  
Xin Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document