Variability of surface sediments in the Peru basin: dependence on water depth, productivity, bottom water flow, and seafloor topography

2000 ◽  
Vol 163 (1-4) ◽  
pp. 169-184 ◽  
Author(s):  
M.E Weber ◽  
U von Stackelberg ◽  
V Marchig ◽  
M Wiedicke ◽  
B Grupe
2021 ◽  
Vol 11 (1) ◽  
pp. 329-338 ◽  
Author(s):  
E. Surojo ◽  
J. Anindito ◽  
F. Paundra ◽  
A. R. Prabowo ◽  
E. P. Budiana ◽  
...  

Abstract Underwater wet welding (UWW) is widely used in repair of offshore constructions and underwater pipelines by the shielded metal arc welding (SMAW) method. They are subjected the dynamic load due to sea water flow. In this condition, they can experience the fatigue failure. This study was aimed to determine the effect of water flow speed (0 m/s, 1 m/s, and 2 m/s) and water depth (2.5 m and 5 m) on the crack growth rate of underwater wet welded low carbon steel SS400. Underwater wet welding processes were conducted using E6013 electrode (RB26) with a diameter of 4 mm, type of negative electrode polarity and constant electric current and welding speed of 90 A and 1.5 mm/s respectively. In air welding process was also conducted for comparison. Compared to in air welded joint, underwater wet welded joints have more weld defects including porosity, incomplete penetration and irregular surface. Fatigue crack growth rate of underwater wet welded joints will decrease as water depth increases and water flow rate decreases. It is represented by Paris's constant, where specimens in air welding, 2.5 m and 5 m water depth have average Paris's constant of 8.16, 7.54 and 5.56 respectively. The increasing water depth will cause the formation of Acicular Ferrite structure which has high fatigue crack resistance. The higher the water flow rate, the higher the welding defects, thereby reducing the fatigue crack resistance.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1599
Author(s):  
Annika Fiskal ◽  
Aixala Gaillard ◽  
Sebastien Giroud ◽  
Dejan Malcic ◽  
Prachi Joshi ◽  
...  

Macroinvertebrates are widespread in lake sediments and alter sedimentary properties through their activity (bioturbation). Understanding the interactions between bioturbation and sediment properties is important given that lakes are important sinks and sources of carbon and nutrients. We studied the biogeochemical impact of macrofauna on surface sediments in 3-month-long mesocosm experiments conducted using sediment cores from a hypoxic, macrofauna-free lake basin. Experimental units consisted of hypoxic controls, oxic treatments, and oxic treatments that were experimentally colonized with chironomid larvae or tubificid worms. Overall, the presence of O2 in bottom water had the strongest geochemical effect and led to oxidation of sediments down to 2 cm depth. Relative to macrofauna-free oxic treatments, chironomid larvae increased sediment pore water concentrations of nitrate and sulfate and lowered porewater concentrations of reduced metals (Fe2+, Mn2+), presumably by burrow ventilation, whereas tubificid worms increased the redox potential, possibly through sediment reworking. Microbial communities were very similar across oxic treatments; however, the fractions of α-, β-, and γ-Proteobacteria and Sphingobacteriia increased, whereas those of Actinobacteria, Planctomycetes, and Omnitrophica decreased compared to hypoxic controls. Sediment microbial communities were, moreover, distinct from those of macrofaunal tubes or feces. We suggest that, under the conditions studied, bottom water oxygenation has a stronger biogeochemical impact on lacustrine surface sediments than macrofaunal bioturbation.


Author(s):  
Øystein Gabrielsen ◽  
Kjell Larsen

The Aasta Hansteen spar in the Norwegian Sea is designed to be moored with a taut polyester rope mooring system. The water depth at the field is 1300 meters, and due to the short installation season the most efficient hookup is with pre-installed mooring lines, which require the mooring lines to be laid down on the seabed. DNV certification does not allow seabed contact for polyester ropes unless proven that no soil ingress and damage takes place. To be able to certify the ropes Statoil developed a test method including contact with soil, rope movement and forced water flow through the filter construction. Full scale tests were performed with actual rope and Aasta Hansteen soil, both in laboratory and at site. This paper discusses the certification requirements and presents adequate qualification test together with results from testing.


2020 ◽  
Author(s):  
Eugene G Morozov ◽  
Dmitry I. Frey ◽  
Roman Y. Tarakanov

Abstract We analyze measurements of bottom currents and thermohaline properties of water north of the Vema Channel with the goal to find pathway continuations of Antarctic Bottom Water flow from the Vema Channel into the Brazil Basin. The analysis is based on CTD/LADCP casts north of the Vema Channel. The flow in the deep Vema Channel consists of two branches. The deepest current flows along the bottom in the center of the channel and the other branch flows above the western wall of the channel. We found two smaller channels of the northern continuation of the deeper bottom flow. These flows become weak and almost disappear at a latitude of 25°30’S. The upper current flows at a depth of 4100-4200 m along the continental slope. We traced this current up to 24°S over a distance exceeding 250 km. This branch transports bottom water that eventually fills the deep basins of the North Atlantic.


2018 ◽  
Vol 61 (2) ◽  
pp. 217-229 ◽  
Author(s):  
Can Wang ◽  
Hailei Wang ◽  
Gao Song ◽  
Mianping Zheng

2020 ◽  
Vol 56 (5) ◽  
pp. 479-487
Author(s):  
E. G. Morozov ◽  
D. I. Frey ◽  
S. V. Gladyshev ◽  
V. S. Gladyshev
Keyword(s):  

1975 ◽  
Vol 80 (36) ◽  
pp. 5083-5088 ◽  
Author(s):  
Michael A. Hobart ◽  
Elizabeth T. Bunce ◽  
John G. Sclater

1999 ◽  
Vol 46 (7) ◽  
pp. 1181-1200 ◽  
Author(s):  
Karen J. Heywood ◽  
Michael D. Sparrow ◽  
Juan Brown ◽  
Robert R. Dickson

2021 ◽  
Vol 9 ◽  
Author(s):  
Pierre Giresse ◽  
Germain Bayon ◽  
Cedric Tallobre ◽  
Lies Loncke

Contourite sediment accumulations at continental margins are related to strong bottom water circulation, where intense winnowing can result in neoformation of authigenic grains of glauconite at the seafloor. In this study, we investigated whether such glauconite grains could faithfully record ambient bottom-water neodymium (Nd) isotopic compositions, and hence be used as paleoceanographic archives. To this purpose, we measured Nd isotopic compositions (εNd) in a series of glauconitic grains, foraminiferal assemblages, leached Fe-Mn oxyhydroxide phases, and detrital clays separated from a contourite sediment record at the Demerara slope off French Guiana (IG-KSF-11; 2370 m water depth), at a location where the present-day εNd distribution along the water column is well characterised. We show that the εNd composition of core-top glauconite grains (−12.0 ± 0.5) agrees with the expected NADW-like seawater signature at the same location and water depth (−11.6 ± 0.3), while departing from measured εNd values for corresponding detrital clays (−11.3 ± 0.2), foraminiferal (−10.9 ± 0.2), and Fe-Mn oxyhydroxide fractions (−9.2 ± 0.2). This finding indicates that glauconitic grains at this particular location are probably best suited for paleoceanographic reconstructions than foraminifera and leached Fe-oxyhydroxide fractions, which appear to be influenced by sediment redistribution and the presence of terrestrial continental Fe-oxides, respectively. Using rare earth elements (REE), we tentatively propose that the acquisition of seawater Nd isotopic signatures by glauconite is controlled by the presence of authigenic REE-bearing phosphate-rich phases intertwined within clay mineral sheets, while confirming previous findings that the process of glauconitisation results in the progressive loss of REE within glauconitic grains. Preliminary paleoceanographic implications suggest strengthened bottom-water circulation of the glacial analogue of NADW at this particular location and water depth, with a εNd signature (between −10.8 and −11.5) similar to that of modern NADW.


Sign in / Sign up

Export Citation Format

Share Document