Amphipods are Good Bioindicators of the Impact of Oil Spills on Soft-Bottom Macrobenthic Communities

2000 ◽  
Vol 40 (11) ◽  
pp. 1017-1027 ◽  
Author(s):  
J.L.Gómez Gesteira ◽  
J.-C Dauvin
Polar Biology ◽  
2021 ◽  
Vol 44 (3) ◽  
pp. 575-586
Author(s):  
Pepijn De Vries ◽  
Jacqueline Tamis ◽  
Jasmine Nahrgang ◽  
Marianne Frantzen ◽  
Robbert Jak ◽  
...  

AbstractIn order to assess the potential impact from oil spills and decide the optimal response actions, prediction of population level effects of key resources is crucial. These assessments are usually based on acute toxicity data combined with precautionary assumptions because chronic data are often lacking. To better understand the consequences of applying precautionary approaches, two approaches for assessing population level effects on the Arctic keystone species polar cod (Boreogadus saida) were compared: a precautionary approach, where all exposed individuals die when exposed above a defined threshold concentration, and a refined (full-dose-response) approach. A matrix model was used to assess the population recovery duration of scenarios with various but constant exposure concentrations, durations and temperatures. The difference between the two approaches was largest for exposures with relatively low concentrations and short durations. Here, the recovery duration for the refined approach was less than eight times that found for the precautionary approach. Quantifying these differences helps to understand the consequences of precautionary assumptions applied to environmental risk assessment used in oil spill response decision making and it can feed into the discussion about the need for more chronic toxicity testing. An elasticity analysis of our model identified embryo and larval survival as crucial processes in the life cycle of polar cod and the impact assessment of oil spills on its population.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Denise P. Silva ◽  
Helena D. M. Villela ◽  
Henrique F. Santos ◽  
Gustavo A. S. Duarte ◽  
José Roberto Ribeiro ◽  
...  

Abstract Background Beginning in the last century, coral reefs have suffered the consequences of anthropogenic activities, including oil contamination. Chemical remediation methods, such as dispersants, can cause substantial harm to corals and reduce their resilience to stressors. To evaluate the impacts of oil contamination and find potential alternative solutions to chemical dispersants, we conducted a mesocosm experiment with the fire coral Millepora alcicornis, which is sensitive to environmental changes. We exposed M. alcicornis to a realistic oil-spill scenario in which we applied an innovative multi-domain bioremediator consortium (bacteria, filamentous fungi, and yeast) and a chemical dispersant (Corexit® 9500, one of the most widely used dispersants), to assess the effects on host health and host-associated microbial communities. Results The selected multi-domain microbial consortium helped to mitigate the impacts of the oil, substantially degrading the polycyclic aromatic and n-alkane fractions and maintaining the physiological integrity of the corals. Exposure to Corexit 9500 negatively impacted the host physiology and altered the coral-associated microbial community. After exposure, the abundances of certain bacterial genera such as Rugeria and Roseovarius increased, as previously reported in stressed or diseased corals. We also identified several bioindicators of Corexit 9500 in the microbiome. The impact of Corexit 9500 on the coral health and microbial community was far greater than oil alone, killing corals after only 4 days of exposure in the flow-through system. In the treatments with Corexit 9500, the action of the bioremediator consortium could not be observed directly because of the extreme toxicity of the dispersant to M. alcicornis and its associated microbiome. Conclusions Our results emphasize the importance of investigating the host-associated microbiome in order to detect and mitigate the effects of oil contamination on corals and the potential role of microbial mitigation and bioindicators as conservation tools. Chemical dispersants were far more damaging to corals and their associated microbiome than oil, and should not be used close to coral reefs. This study can aid in decision-making to minimize the negative effects of oil and dispersants on coral reefs.


2007 ◽  
Vol 349 (2) ◽  
pp. 323-333 ◽  
Author(s):  
Iñigo Muxika ◽  
Leire Ibaibarriaga ◽  
José Ignacio Sáiz ◽  
Ángel Borja

2018 ◽  
Vol 15 (9) ◽  
pp. 2587-2599 ◽  
Author(s):  
Sebastiaan Mestdagh ◽  
Leila Bagaço ◽  
Ulrike Braeckman ◽  
Tom Ysebaert ◽  
Bart De Smet ◽  
...  

Abstract. Human activities, among which dredging and land use change in river basins, are altering estuarine ecosystems. These activities may result in changes in sedimentary processes, affecting biodiversity of sediment macrofauna. As macrofauna controls sediment chemistry and fluxes of energy and matter between water column and sediment, changes in the structure of macrobenthic communities could affect the functioning of an entire ecosystem. We assessed the impact of sediment deposition on intertidal macrobenthic communities and on rates of an important ecosystem function, i.e. sediment community oxygen consumption (SCOC). An experiment was performed with undisturbed sediment samples from the Scheldt river estuary (SW Netherlands). The samples were subjected to four sedimentation regimes: one control and three with a deposited sediment layer of 1, 2 or 5 cm. Oxygen consumption was measured during incubation at ambient temperature. Luminophores applied at the surface, and a seawater–bromide mixture, served as tracers for bioturbation and bio-irrigation, respectively. After incubation, the macrofauna was extracted, identified, and counted and then classified into functional groups based on motility and sediment reworking capacity. Total macrofaunal densities dropped already under the thinnest deposits. The most affected fauna were surficial and low-motility animals, occurring at high densities in the control. Their mortality resulted in a drop in SCOC, which decreased steadily with increasing deposit thickness, while bio-irrigation and bioturbation activity showed increases in the lower sediment deposition regimes but decreases in the more extreme treatments. The initial increased activity likely counteracted the effects of the drop in low-motility, surficial fauna densities, resulting in a steady rather than sudden fall in oxygen consumption. We conclude that the functional identity in terms of motility and sediment reworking can be crucial in our understanding of the regulation of ecosystem functioning and the impact of habitat alterations such as sediment deposition.


2016 ◽  
Vol 8 (1) ◽  
pp. 174-194 ◽  
Author(s):  
Irina Catianis ◽  
Constantin Ungureanu ◽  
Luca Magagnini ◽  
Elisa Ulazzi ◽  
Tiziana Campisi ◽  
...  

AbstractThe aim of the study was to evaluate the impact of potential pollution sources, mainly from the upstream anthropogenic sources and port-related activities. The in-vestigated area covered a wide range of anthropogenic im-pacts (e.g., industrial wastes, storm water runoff, acciden-tal oil spills, intentional discharges and shipping activities). The quality of water and Sediments was assessed us-ing Standard methods, as physical-chemical parameters, chemistry and biology (microbiology, ecotoxicology) aim-ing to figure the level of pollution and the effect of port-related activities. Seawater quality results agreed generally with environmental Standards. Though, in some samples the concentrations of sulphates (mg/1) and heavy metals (μg/1), as B, As and Se exceeded the recommended lim-its, without posing a serious environmental concern. Most of the surface sediment samples contain critical levels of hydrocarbons (C>12), (mg/kg), polycyclic aromatic hydrocarbons (ng/g) and polychlorobiphenyls (ng/g). For some heavy metals (mg/kg), exchangeable concentrations were found to be very close or above the regulations. The signifi-cance of this study is incontestable taking into account the lack of previous relevant historical data of this area. In this sense, it was possible to indicate, in general, good environmental conditions, despite the industrial and concentrated local port-related activities in the investigated area.


Author(s):  
Eduardo Castillo-Orozco ◽  
Ashkan Davanlou ◽  
Pretam K. Choudhury ◽  
Ranganathan Kumar

The release of liquid hydrocarbons into the water is one of the environmental issues that have attracted more attention after deepwater horizon oil spill in Gulf of Mexico. The understanding of the interaction between liquid droplets impacting on an immiscible fluid is important for cleaning up oil spills as well as the demulsification process. Here we study the impact of low-viscosity liquid drops on high-viscosity liquid pools, e.g. water and ethanol droplets on a silicone oil 10cSt bath. We use an ultrafast camera and image processing to provide a detailed description of the impact phenomenon. Our observations suggest that viscosity and density ratio of the two media play a major role in the post-impact behavior. When the droplet density is larger than that of the pool, additional cavity is generated inside the pool. However, if the density of the droplet is lower than the pool, droplet momentary penetration may be facilitated by high impact velocities. In crown splash regime, the pool properties as well as drop properties play an important role. In addition, the appearance of the central jet is highly affected by the properties of the impacting droplet. In general, the size of generated daughter droplets as well as the thickness of the jet is reduced compared to the impact of droplets with the pool of an identical fluid.


Author(s):  
Ferdinando Nunziata ◽  
Andrea Buono ◽  
Maurizio Migliaccio

Oil spills are adverse events that may be very harmful to ecosystems and food chain. In particular, large sea oil spills are very dramatic occurrence often affecting sea and coastal areas. Therefore the sustainability of oil rig infrastructures and oil transportation via oil tankers are linked to law enforcement based on proper monitoring techniques which are also fundamental to mitigate the impact of such pollution. Within this context, in this study a meaningful showcase is analyzed using remotely sensed measurements collected by the Synthetic Aperture Radar (SAR) operated by the COSMO-SkyMed (CSK) constellation. The showcase presented refers to the Deepwater Horizon (DWH) oil incident that occurred in the Gulf of Mexico in 2010. It is one of the world's largest incidental oil pollution event that affected a sea area larger than 10,000 km2. In this study we exploit, for the first time, dual co-polarization SAR data collected by the Italian CSK X-band SAR constellation showing the key benefits of HH-VV SAR measurements in observing such a huge oil pollution event, especially in terms of the very dense revisit time offered by the CSK constellation.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3287 ◽  
Author(s):  
Ryan M. Huang ◽  
Oron L. Bass Jr ◽  
Stuart L. Pimm

Migratory seabirds face threats from climate change and a variety of anthropogenic disturbances. Although most seabird research has focused on the ecology of individuals at the colony, technological advances now allow researchers to track seabird movements at sea and during migration. We combined telemetry data on Onychoprion fuscatus (sooty terns) with a long-term capture-mark-recapture dataset from the Dry Tortugas National Park to map the movements at sea for this species, calculate estimates of mortality, and investigate the impact of hurricanes on a migratory seabird. Included in the latter analysis is information on the locations of recovered bands from deceased individuals wrecked by tropical storms. We present the first known map of sooty tern migration in the Atlantic Ocean. Our results indicate that the birds had minor overlaps with areas affected by the major 2010 oil spill and a major shrimp fishery. Indices of hurricane strength and occurrence are positively correlated with annual mortality and indices of numbers of wrecked birds. As climate change may lead to an increase in severity and frequency of major hurricanes, this may pose a long-term problem for this colony.


Sign in / Sign up

Export Citation Format

Share Document