When Body Temperature Changes, Does Rectal Temperature Lag?

2006 ◽  
Vol 2006 ◽  
pp. 509-510
Author(s):  
J.A. Stockman
2018 ◽  
Vol 14 (2) ◽  
pp. 91-97 ◽  
Author(s):  
J.A. Baker ◽  
M.S. Davis

Our objective was to evaluate the effect of conditioning and hypoxia on rectal and gastrointestinal temperature changes in dogs exercising at cold ambient temperature. Six Alaskan Husky sled dogs, each in a physically conditioned and unconditioned state, were used in the prospective study. Dogs in peak physical condition were run untethered on a treadmill under normoxic and hypoxic conditions of 20 and 12.5% environmental oxygen concentration, respectively, on separate days. After undergoing a deconditioning period of four months, the same dogs were run again under the same environmental conditions of 20 and 12.5% O2. Body temperature measurements were obtained via digital rectal thermometer and ingestible gastrointestinal thermistor at baseline, every 5 min for 30 min of exercise, and for 15 min following cessation of exercise. Under hypoxic conditions, peak gastrointestinal temperature was lower in conditioned vs unconditioned dogs. Gastrointestinal cooling was faster in conditioned dogs under normoxic conditions only. There was no difference in the peak rectal temperature, or rate of rectal temperature cooling in either normoxic or hypoxic conditions. 3 of 6 (50%) of the conditioned dogs reached a plateau temperature after approximately 20 to 25 min. This was observed less frequently when the dogs were unconditioned. Gastrointestinal and rectal temperatures reacted differently to exercise depending on conditioning or environmental oxygen concentration and this suggests that they cannot be used interchangeably to assess body temperature. Under these conditions, conditioning had no effect on rectal temperature. Presence of a plateau effect of rectal or gastrointestinal temperature may demonstrate a thermoregulatory balance of heat production and heat loss and may be a helpful measure in assessing individual dogs’ level of conditioning with regard to resistance to thermal stress.


2004 ◽  
Vol 144 (6) ◽  
pp. 824-826 ◽  
Author(s):  
David S. Greenes ◽  
Gary R. Fleisher

1968 ◽  
Vol 10 (3) ◽  
pp. 319-323 ◽  
Author(s):  
J. G. Griffiths

Studies of rectal temperature changes in Blackface lambs from birth to 24 hr indicated a very limited effect within an ambient temperature range of 28 to 66°F. The rectal temperature of twins at birth was lower than that of singles, but the difference disappeared by 3 hr after birth. Body weight was correlated with rectal temperature at birth only in twins. In both twins and singles there was an elevated level of rectal temperature after birth which was presumably associated with a postnatal rise in metabolic rate similar to that which occurs in other species. It is concluded from the results that heat regulation is completely developed within a short interval of birth.Changes in body weight at intervals up to 48 hr were small, and body weight was significantly different from that at birth only at 48 hr in single lambs.


2012 ◽  
Vol 26 (2) ◽  
Author(s):  
Joanna Pawlak ◽  
Paweł Zalewski ◽  
Jacek J. Klawe ◽  
Monika Zawadka ◽  
Anna Bitner ◽  
...  

1967 ◽  
Vol 45 (3) ◽  
pp. 321-327 ◽  
Author(s):  
David M. Ogilvie

The effects, on the body temperature of white mice, of repeated short exposures to cold were investigated using two methods of restraint. Animals held in a flattened posture became hypothermic at room temperature, cooled more than five times as fast at −10 °C as mice that could adopt a heat-conserving posture, and continued to cool for some time after they were removed from the cold. With repeated tests, cooling at room temperature decreased, and an improvement in re warming ability was observed. In addition, with lightly restrained mice, the fall in rectal temperature during cold exposure showed a progressive decrease, a phenomenon not observed with severely restrained animals.


1998 ◽  
Vol 85 (1) ◽  
pp. 204-209 ◽  
Author(s):  
John W. Castellani ◽  
Andrew J. Young ◽  
Michael N. Sawka ◽  
Kent B. Pandolf

This study examined whether serial cold-water immersions over a 10-h period would lead to fatigue of shivering and vasoconstriction. Eight men were immersed (2 h) in 20°C water three times (0700, 1100, and 1500) in 1 day (Repeat). This trial was compared with single immersions (Control) conducted at the same times of day. Before Repeat exposures at 1100 and 1500, rewarming was employed to standardize initial rectal temperature. The following observations were made in the Repeat relative to the Control trial: 1) rectal temperature was lower and heat debt was higher ( P < 0.05) at 1100; 2) metabolic heat production was lower ( P < 0.05) at 1100 and 1500; 3) subjects perceived the Repeat trial as warmer at 1100. These data suggest that repeated cold exposures may impair the ability to maintain normal body temperature because of a blunting of metabolic heat production, perhaps reflecting a fatigue mechanism. An alternative explanation is that shivering habituation develops rapidly during serially repeated cold exposures.


1975 ◽  
Vol 53 (6) ◽  
pp. 679-685 ◽  
Author(s):  
J. B. Holter ◽  
W. E. Urban Jr. ◽  
H. H. Hayes ◽  
H. Silver ◽  
H. R. Skutt

Six adult white-tailed deer (Odocoileus virginianus borealis) were exposed to 165 periods of 12 consecutive hours of controlled constant ambient temperature in an indirect respiration calorimeter. Temperatures among periods varied from 38 to 0 (summer) or to −20C (fall, winter, spring). Traits measured were energy expenditure (metabolic rate), proportion of time spent standing, heart rate, and body temperature, the latter two using telemetry. The deer used body posture extensively as a means of maintaining body energy equilibrium. Energy expenditure was increased at low ambient temperature to combat cold and to maintain relatively constant body temperature. Changes in heart rate paralleled changes in energy expenditure. In a limited number of comparisons, slight wind chill was combatted through behavioral means with no effect on energy expenditure. The reaction of deer to varying ambient temperatures was not the same in all seasons of the year.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 154-155
Author(s):  
Katherine Vande Pol ◽  
Naomi Cooper ◽  
Andres Tolosa ◽  
Michael Ellis ◽  
Richard Gates ◽  
...  

Abstract Piglets often experience hypothermia early after birth. Previous research has suggested that drying piglets and administration of oxygen (a potential treatment for asphyxiation) at birth may increase post-natal rectal temperatures. The objective of this study was to determine the effects of drying and administering oxygen at birth on piglet rectal temperature over the first 24 h after birth. The study, conducted at a commercial facility, used a CRD with 42 sows/litters randomly allotted at start of farrowing to 3 treatments (applied at birth): Control (no drying or oxygenation); Dried (using a cellulose-based desiccant); Dried+Oxygen [dried and placed in a chamber (40% oxygen) for 20 min]. At birth, piglets were weighed and uniquely identified. Rectal temperature was measured at 0, 20, 30, 45, 60, 120, and 1440 min after birth. Data were analyzed using PROC MIXED of SAS. Litter was the experimental unit; piglet was a subsample of litter. The statistical model included effects of treatment, time of measurement, and the interaction. Both the Dried and Dried+Oxygen treatments had greater (P &lt; 0.05) rectal temperatures than the Control between 20 and 120 min. However, the Dried+Oxygen treatment had lower (P &lt; 0.05) rectal temperatures than the Dried treatment between 20 and 60 minutes. Temperatures at 1440 min were lower (P &lt; 0.05) for the Dried+Oxygen than the other treatments; however, differences were small. In conclusion, drying piglets at birth increased rectal temperatures over the first 2 h after birth. The combination of drying piglets at birth and placement in an oxygen chamber for 20 min was less effective at moderating post-natal temperature changes than drying alone. Further research on piglet oxygenation is necessary to understand the reason for these reduced temperatures, and whether this treatment affects pre-weaning mortality. This research was funded by the National Pork Board.


1961 ◽  
Vol 38 (2) ◽  
pp. 301-314 ◽  
Author(s):  
BODIL NIELSEN

1. In two species of Lacerta (L. viridis and L. sicula) the effects on respiration of body temperature (changes in metabolic rate) and of CO2 added to the inspired air were studied. 2. Pulmonary ventilation increases when body temperature increases. The increase is brought about by an increase in respiratory frequency. No relationship is found between respiratory depth and temperature. 3. The rise in ventilation is provoked by the needs of metabolism and is not established for temperature regulating purposes (in the temperature interval 10°-35°C). 4. The ventilation per litre O2 consumed has a high numerical value (about 75, compared to about 20 in man). It varies with the body temperature and demonstrates that the inspired air is better utilized at the higher temperatures. 5. Pulmonary ventilation increases with increasing CO2 percentages in the inspired air between o and 3%. At further increases in the CO2 percentage (3-13.5%) it decreases again. 6. At each CO2 percentage the pulmonary ventilation reaches a steady state after some time (10-60 min.) and is then unchanged over prolonged periods (1 hr.). 7. The respiratory frequency in the steady state decreases with increasing CO2 percentages. The respiratory depth in the steady state increases with increasing CO2 percentages. This effect of CO2 breathing is not influenced by a change in body temperature from 20° to 30°C. 8. Respiration is periodically inhibited by CO2 percentages above 4%. This inhibition, causing a Cheyne-Stokes-like respiration, ceases after a certain time, proportional to the CO2 percentage (1 hr. at 8-13% CO2), and respiration becomes regular (steady state). Shift to room air breathing causes an instantaneous increase in frequency to well above the normal value followed by a gradual decrease to normal values. 9. The nature of the CO2 effect on respiratory frequency and respiratory depth is discussed, considering both chemoreceptor and humoral mechanisms.


Sign in / Sign up

Export Citation Format

Share Document