Magnetothermoelasticity with two relaxation times in conducting medium with variable electrical and thermal conductivity

2003 ◽  
Vol 142 (2-3) ◽  
pp. 449-467 ◽  
Author(s):  
Magdy A. Ezzat ◽  
Ahmed S. El-Karamany
Author(s):  
A. J. H. McGaughey ◽  
J. A. Thomas ◽  
J. Turney ◽  
R. M. Iutzi

We investigate thermal transport in water/carbon nanotube (CNT) composite systems using molecular dynamics simulations. Carbon-carbon interactions are modeled using the second-generation REBO potential, water-water interactions are modeled using the TIP4P potential, and carbon-water interactions are modeled using a Lennard-Jones potential. The thermal conductivities of empty and water-filled CNTs with diameters between 0.83 nm and 1.66 nm are predicted using molecular dynamics simulation and a direct application of the Fourier law. For empty CNTs, the thermal conductivity decreases with increasing CNT diameter. As the CNT length approaches 1 micron, a length-independent thermal conductivity is obtained, indicative of diffusive phonon transport. When the CNTs are filled with water, the thermal conductivity decreases compared to the empty CNTs and transitions to diffusive phonon transport at shorter lengths. To understand this behavior, we calculate the spectral energy density of the empty and water-filled CNTs and calculate the mode-specific group velocities, relaxation times, and thermal conductivity. For the empty 1.10 nm diameter CNT, we show that the acoustic phonon modes account for 65 percent of the total thermal conductivity. This behavior is attributed to their long mean-free paths. When the CNT is filled with water, interactions with the water molecules shorten the acoustic mode mean-free path and lower the overall CNT thermal conductivity.


2013 ◽  
Vol 135 (9) ◽  
Author(s):  
Yaguo Wang ◽  
Bo Qiu ◽  
Alan J. H. McGaughey ◽  
Xiulin Ruan ◽  
Xianfan Xu

Thermal properties and transport control are important for many applications, for example, low thermal conductivity is desirable for thermoelectrics. Knowledge of mode-wise phonon properties is crucial to identify dominant phonon modes for thermal transport and to design effective phonon barriers for thermal transport control. In this paper, we adopt time-domain (TD) and frequency-domain (FD) normal-mode analyses to investigate mode-wise phonon properties and to calculate phonon dispersion relations and phonon relaxation times in bismuth telluride. Our simulation results agree with the previously reported data obtained from ultrafast time-resolved measurements. By combining frequency-dependent anharmonic phonon group velocities and lifetimes, mode-wise thermal conductivities are predicted to reveal the contributions of heat carriers with different wavelengths and polarizations.


Author(s):  
Alan J. H. McGaughey ◽  
Daniel P. Sellan ◽  
Eric S. Landry ◽  
Cristina H. Amon

We present a closed-form classical model for the size dependence of thin film thermal conductivity. The model predictions are compared to Stillinger-Weber silicon thin film thermal conductivities (in-plane and cross-plane directions) calculated using phonon properties obtained from lattice dynamics calculations. By including the frequency dependence of the phonon-phonon relaxation times, the model is able to capture the approach to the bulk thermal conductivity better than models based on a single relaxation time.


2011 ◽  
Vol 25 (10) ◽  
pp. 1409-1418 ◽  
Author(s):  
M. ATAULLAH ANSARI ◽  
VINOD ASHOKAN ◽  
B. D. INDU

The lattice thermal conductivity of InSb and CdS has been analyzed on the basis of the most acquiescent Callaway model in the temperature range 2–300.779 K and 2.296–283.565 K. To reinvigorate the effects of phonon anharmonicities, more rigorous expressions for the phonon–phonon interactions, resonance, impurity and interference scattering relaxation times have been introduced to theoretically justify the experimentally observed results. A fairly good agreement between theory and experiments has been presented.


2020 ◽  
pp. 342-378
Author(s):  
Sandip Tiwari

This chapter discusses the statics and dynamics of particle ensemble evolution under multiple stimuli—electrical, magnetic and thermal, particularly (thermoelectromagnetic interaction)—by developing the evolution of the distribution function in a generalized form from its thermal equilibrium form. In the presence of electrical and magnetic fields, this shows the Hall effect, magnetoresistance, et cetera. Add thermal gradients, and one can elaborate additional consequences that can be calculated in terms of momentum relaxation times and the nature of impulse interaction, since momentum and energies carried by the ensemble are accounted for. So, parameters such as thermal conductivity due to the carriers can be determined, thermoelectric, thermomagnetic and thermoelectromagnetic interactions can be quantified and the Ettinghausen effect, the Nernst effect, the Righi-Leduc effect, the Ettinghausen-Nernst effect, the Seebeck effect, the Peltier effect and the Thompson coefficient understood. The dynamics also makes it possible to determine the frequency dependence of the phenomena.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Javier V. Goicochea ◽  
Marcela Madrid ◽  
Cristina Amon

Molecular dynamics simulations are performed to estimate acoustical and optical phonon relaxation times, dispersion relations, group velocities, and specific heat of silicon needed to solve the Boltzmann transport equation (BTE) at 300 K and 1000 K. The relaxation times are calculated from the temporal decay of the autocorrelation function of the fluctuation of total energy of each normal mode in the ⟨100⟩ family of directions, where the total energy of each mode is obtained from the normal mode decomposition of the motion of the silicon atoms over a period of time. Additionally, silicon dispersion relations are directly determined from the equipartition theorem obtained from the normal mode decomposition. The impact of the anharmonic nature of the potential energy function on the thermal expansion of the crystal is determined by computing the lattice parameter at the cited temperatures using a NPT (i.e., constant number of atoms, pressure, and temperature) ensemble, and are compared with experimental values reported in the literature and with those computed analytically using the quasiharmonic approximation. The dependence of the relaxation times with respect to the frequency is identified with two functions that follow the functional form of the relaxation time expressions reported in the literature. From these functions a simplified version of relaxation times for each normal mode is extracted. Properties, such as group and phase velocities, thermal conductivity, and mean free path, needed to further develop a methodology for the thermal analysis of electronic devices (i.e., from nano- to macroscales) are determined once the relaxation times and dispersion relations are obtained. The thermal properties are validated by comparing the BTE-based thermal conductivity against the predictions obtained from the Green–Kubo method. It is found that the relaxation times closely resemble the ones obtained from perturbation theory at high temperatures; the contribution to the thermal conductivity of the transverse acoustic, longitudinal acoustic, and longitudinal optical modes being approximately 30%, 60%, and 10%, respectively, and the contribution of the transverse optical mode negligible.


2011 ◽  
Vol 25 (09) ◽  
pp. 663-678 ◽  
Author(s):  
VINOD ASHOKAN ◽  
B. D. INDU

An ab initio formulation of relaxation times of various contributing processes have been observed with newer understanding in terms of electron and phonon line widths. This is dealt with the help of double time temperature-dependent Green's function via a non-perturbative approach using a crystal Hamiltonian which comprises of the effects of electrons, phonons, impurities, anharmonicities and interactions thereof. The frequency line widths is observed as an extremely sensitive quantity in the transport phenomena of high temperature superconductors (HTS) as a collection of a large number of scattering processes, namely: boundary scattering, impurity scattering, multi-phonon scattering, interference scattering, electron–phonon processes and resonance scattering. The behavior of electrons and phonons is then investigated to describe the thermal conductivity of a variety of HTS samples specially in the vicinity of transition temperature to successfully explain the spectacular dip region of thermal conductivity curve which was lacking in explanation earlier with a sound physical justification.


Author(s):  
Cheng Shao ◽  
Hua Bao

The successful exfoliation of atomically-thin bismuth telluride quintuple layer (QL) attracts tremendous interest in investigating the electron and phonon transport properties in this quasi-two-dimensional material. While experimental results show that thermal conductivity is significantly reduced in Bi2Te3 QL compared to the bulk phase, the underlying mechanisms for the reduction is still unclear. Also in some measurements, the Bi2Te3 QL is usually supported on the substrate and the effect of the substrate on heat transfer in Bi2Te3 QL is unknown. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-wise phonon properties in freestanding and supported Bi2Te3 QL. We found that the existing of substrate will decrease the phonon relaxation times in Bi2Te3 QL in the full frequency range. Thermal conductivity accumulation function for both freestanding and supported Bi2Te3 QL are constructed and compared. We found that half of heat transfer in freestanding Bi2Te3 QL contributed from phonons with mean free paths larger than 16.5 nm, while in supported Bi2Te3 QL this value is reduced to 11 nm. In both cases phonons with MFPs in the range of 10–30 nm are the dominate heat carriers, which contribute to 55% and 53% of thermal conductivity in freestanding and supported cases.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Zan Wang

Bamboo-like SiC nanowires (NWs) have specific geometric shapes, which have the potential to suppress thermal conductivity by phonon boundary scattering. In this work, phonon transport behaviors in the 3C-SiC, 4H-SiC, and 6H-SiC crystal lattices are studied by the Monte Carlo (MC) method, including impurity scattering, boundary scattering, and Umklapp scattering. Phonon relaxation times for Umklapp (U) scattering for the above three SiC polytypes are calculated from the respective phonon spectra, which have not been reported in the literature. Diffuse boundary scattering and thermal rectification with different aspect ratios are also studied at different temperatures. It is found that the thermal conductivities of the bamboo-like SiC polytypes can be lowered by two orders of magnitude compared with the bulk values by contributions from boundary scattering. Compared with bamboo-like 4H-SiC and 6H-SiC NWs, 3C-SiC has the largest U scattering relaxation rate and boundary scattering rate, which leads to its lowest thermal conductivities. The thermal conductivity in the positive direction is larger than that in the negative direction because of its lower boundary scattering relaxation rate.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Prabhakar Marepalli ◽  
Jayathi Y. Murthy ◽  
Bo Qiu ◽  
Xiulin Ruan

In recent years, there has been interest in employing atomistic computations to inform macroscale thermal transport analyses. In heat conduction simulations in semiconductors and dielectrics, for example, classical molecular dynamics (MD) is used to compute phonon relaxation times, from which material thermal conductivity may be inferred and used at the macroscale. A drawback of this method is the noise associated with MD simulation (here after referred to as MD noise), which is generated due to the possibility of multiple initial configurations corresponding to the same system temperature. When MD is used to compute phonon relaxation times, the spread may be as high as 20%. In this work, we propose a method to quantify the uncertainty in thermal conductivity computations due to MD noise, and its effect on the computation of the temperature distribution in heat conduction simulations. Bayesian inference is used to construct a probabilistic surrogate model for thermal conductivity as a function of temperature, accounting for the statistical spread in MD relaxation times. The surrogate model is used in probabilistic computations of the temperature field in macroscale Fourier conduction simulations. These simulations yield probability density functions (PDFs) of the spatial temperature distribution resulting from the PDFs of thermal conductivity. To allay the cost of probabilistic computations, a stochastic collocation technique based on generalized polynomial chaos (gPC) is used to construct a response surface for the variation of temperature (at each physical location in the domain) as a function of the random variables in the thermal conductivity model. Results are presented for the spatial variation of the probability density function of temperature as a function of spatial location in a typical heat conduction problem to establish the viability of the method.


Sign in / Sign up

Export Citation Format

Share Document