Studies on the nitrogen ion irradiation induced defects in n-GaAs by deep level transient spectroscopy

Author(s):  
P. Jayavel ◽  
K. Santhakumar ◽  
K. Asokan
2006 ◽  
Vol 527-529 ◽  
pp. 1167-1170 ◽  
Author(s):  
Vito Raineri ◽  
Fabrizio Roccaforte ◽  
Sebania Libertino ◽  
Alfonso Ruggiero ◽  
V. Massimino ◽  
...  

The defects formation in ion-irradiated 4H-SiC was investigated and correlated with the electrical properties of Schottky diodes. The diodes were irradiated with 1 MeV Si+-ions, at fluences ranging between 1×109cm-2 and 1.8×1013cm-2. After irradiation, the current-voltage characteristics of the diodes showed an increase of the leakage current with increasing ion fluence. The reverse I-V characteristics of the irradiated diodes monitored as a function of the temperature showed an Arrhenius dependence of the leakage, with an activation energy of 0.64 eV. Deep level transient spectroscopy (DLTS) allowed to demonstrate that the Z1/Z2 center of 4H-SiC is the dominant defect in the increase of the leakage current in the irradiated material.


Author(s):  
Ivana Capan ◽  
Tomislav Brodar ◽  
Takahiro Makino ◽  
Vladimir Radulovic ◽  
Luka Snoj

We report on metastable defects introduced in n-type 4H-SiC material by epithermal and fast neutron irradiation. The epithermal and fast neutron irradiation defects in 4H-SiC are much less explored compared to electron or proton irradiation induced defects. In addition to silicon vacancy (Vsi) and carbon antisite-carbon vacancy (CAV) complex, the neutron irradiation has introduced four deep level defects, all arising from the metastable defect, the M-center. The metastable deep level defects were investigated by deep level transient spectroscopy (DLTS), high-resolution Laplace DLTS (L-DLTS) and isothermal DLTS. The existence of the fourth deep level M4, recently observed in ion implanted 4H-SiC, has been additionally confirmed in neutron irradiated samples. The isothermal DLTS technique has been proven as a useful tool for studying the metastable defects.


2011 ◽  
Vol 178-179 ◽  
pp. 192-197 ◽  
Author(s):  
Helge Malmbekk ◽  
Lasse Vines ◽  
Edouard V. Monakhov ◽  
Bengt Gunnar Svensson

Interaction between hydrogen (H) and irradiation induced defects in p-type silicon (Si) have been studied in H implanted pn-junctions, using deep level transient spectroscopy (DLTS), as well as minority carrier transient spectroscopy (MCTS). Two H related levels at Ev+0.27 eV and Ec-0.32 eV have been observed (Ev and Ec denote the valence and conduction band edge, respectively). Both levels form after a 10 min anneal at 125C, concurrent with the release of H from the boron-hydrogen (B-H) complex. The correlated formation rates and absolute concentrations of the two levels support the notion that they are due to the same defect. In addition, a level at Ec-0.45 eV is observed and discussed in terms of vacancy-hydrogen related defects.


2005 ◽  
Vol 108-109 ◽  
pp. 373-378 ◽  
Author(s):  
Marie-Laure David ◽  
Eddy Simoen ◽  
Cor Claeys ◽  
V.B. Neimash ◽  
M. Kras'ko ◽  
...  

Different group IV impurities (Pb, C, and Sn) have been introduced in the melt during the growth of n-type Czochralski silicon. The samples have been irradiated with 1 MeV electrons to a fluence of 4x1015cm-2. The irradiation-induced defects have been studied by Deep Level Transient Spectroscopy (DLTS). It is shown that the formation of one of the irradiation-induced deep level is avoided by the Pb-doping. This level is located at 0.37 eV from the conduction band edge (EC) and shows an apparent capture cross-section of 7x10-15cm2. In addition, another irradiation induced deep level located at EC - 0.32 eV has been studied in more details.


2007 ◽  
Vol 556-557 ◽  
pp. 461-464
Author(s):  
Ioana Pintilie ◽  
K. Irmscher ◽  
Ulrike Grossner ◽  
Bengt Gunnar Svensson ◽  
Bernd Thomas

Nitrogen doped 4H-SiC epitaxial layers grown by hot-wall chemical vapor deposition were investigated by Deep Level Transient Spectroscopy after irradiation with 6 MeV electrons at room temperature. This study is focusing on the influence of nitrogen doping and C/Si ratio on the behaviour of the Z1,2 and EH6,7 levels which occur in already as-grown material but are substantially enhanced by electron and ion irradiation. It was found that both the Z1,2 and EH6,7 concentrations increase with both the nitrogen doping and the C/Si ratio. However, while the Z1,2 concentration increases during post-irradiation thermal treatment the opposite holds for the EH6,7 level especially in silicon rich samples. On the basis of these results, the influence of carbon and nitrogen on the formation of the Z1,2 complex is reconfirmed and a possible identity of the EH6,7 defect is discussed.


Vacuum ◽  
2009 ◽  
Vol 84 (1) ◽  
pp. 32-36 ◽  
Author(s):  
I. Capan ◽  
B. Pivac ◽  
I.D. Hawkins ◽  
V.P. Markevich ◽  
A.R. Peaker ◽  
...  

2006 ◽  
Vol 957 ◽  
Author(s):  
F Danie Auret ◽  
Michael Hayes ◽  
Jackie Nel ◽  
Walter Meyer ◽  
Pieter Johan Janse van Rensburg ◽  
...  

ABSTRACTRu Schottky barrier diodes (SBD's) were fabricated on the Zn face of n-type ZnO. These diodes were irradiated with 1.8 MeV at fluences ranging from 1 ´ 1013 cm-2 to 2.4 ´ 1014 cm-2. Capacitance and current (I) deep level transient spectroscopy (DLTS) was used to characterise the irradiation induced defects. Capacitance DLTS showed that proton irradiation introduced a level, Ep1, at 0.52 eV below the conduction band at an introduction rate of 13±1 cm-1. A defect with a very similar DLTS signature was also present in low concentrations in unirradiated ZnO. I-DLTS revealed that this proton irradiation introduced a defect with an energy level at (0.036± 0.004) eV below the conduction band. This defect is clearly distinguishable from a defect with a level at (0.033± 0.004) eV below the conduction band that was present in the unirradiated sample. It is speculated that these shallow level defects are related to zinc interstitials or complexes involving them.


Sign in / Sign up

Export Citation Format

Share Document