503 THE REGULATIVE EFFECTS OF FAK-RELATED NON-KINASE ON IN VITRO HEPATIC STELLATE CELLS COLLAGEN METABOLISM

2008 ◽  
Vol 48 ◽  
pp. S190
Author(s):  
J. Wei ◽  
X.L. Zhang ◽  
Z.N. Dun ◽  
S.R. Xie ◽  
J.G. Shen ◽  
...  
Author(s):  
Junyan Yan ◽  
Baowei Hu ◽  
Wenjie Shi ◽  
Xiaoyi Wang ◽  
Jiayuan Shen ◽  
...  

The Hedgehog (Hh) signaling pathway is correlated with hepatic stellate cells (HSCs) activation and liver fibrosis. Gli2 is a key transcription effector of Hh signaling. However, the role of Gli2 in HSC-mediated liver fibrosis progression is largely unknown. In the present study, we investigated the effect of Gli2 on liver fibrogenesis and its possible mechanism using conditional knockout (cKO) Gli2 mice and HSC models. Wild-type (WT) and GFAP-CreERT;Gli2flox/flox male mice were exposed to CCl4 for one month to induce liver fibrosis. Primary HSCs were isolated from mice and the transition of HSCs into a myofibroblastic phenotype was evaluated. Livers from mice underwent histological, immunohistochemical, and immunofluorescence analyses. The expression levels of proteins and genes were evaluated by Western blot (WB) analysis and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. RNA-seq was used to screen differentially expressed genes. Results showed that CCl4 treatment induced liver fibrosis, promoted HSCs activation and proliferation, and up-regulated Hh signaling activity. The cKO of Gli2 in GFAP-CreERT;Gli2flox/flox mice decreased liver fibrosis as well as HSC activation and proliferation. In vitro studies showed that KO of Gli2 in HSCs blocked cell proliferation and activation by decrease of cyclin D1/D2 expression. The RNA-seq results revealed that the expression levels TGF-β1 ligands were down-regulated in Gli2 KO HSCs. Furthermore, overexpression of Gli2 rescued proliferation and activation of HSCs by up-regulation of TGF-β signaling activity. Our data demonstrated that Gli2 regulated HSC activation and liver fibrosis by TGF-β signaling, thus providing support for future Gli2-based investigations of liver fibrosis therapy.


2007 ◽  
Vol 12 (5) ◽  
pp. 059801
Author(s):  
Aiguo Shen ◽  
Zhangxiu Liao ◽  
Hui Wang ◽  
Iiho Goan ◽  
Yong Wu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Siliang Wang ◽  
Cheng Tang ◽  
Heng Zhao ◽  
Peiliang Shen ◽  
Chao Lin ◽  
...  

Background: Si-Ni-San (SNS), a commonly used traditional Chinese medicine (TCM) formula, has potency against liver diseases, such as hepatitis and non-alcoholic fatty liver disease (NAFLD). However, the therapeutic efficacy and pharmacological mechanisms of action of SNS against liver fibrosis remain largely unclear.Methods: A carbon tetrachloride (CCl4)-induced liver fibrosis mouse model was adopted for the first time to investigate the beneficial effects of SNS on liver fibrosis. The potential mechanisms of action of SNS were explored using the network pharmacology-based strategy and validated with the aid of diverse assays.Results: SNS treatment reduced collagen and ECM deposition, downregulated fibrosis-related factor (hyaluronic acid and laminin) contents in serum, maintained the morphological structure of liver tissue, and improved liver function in the liver fibrosis model. Based on network pharmacology results, apoptosis, inflammation and angiogenesis, together with the associated pathways (including VEGF, TNF, caspase, PPAR-γ and NF-κB), were identified as the mechanisms underlying the effects of SNS on liver fibrosis. Further in vivo experiments validated the significant mitigatory effects of SNS on inflammatory infiltration and pro-inflammatory cytokine contents (IFNγ, IL-1β and TGF-β1) in liver tissues of mice with liver fibrosis. SNS suppressed pathologic neovascularization as well as levels of VEGFR1, VEGF and VEGFR2 in liver tissues. SNS treatment additionally inhibited hepatic parenchyma cell apoptosis in liver tissues of mice with liver fibrosis and regulated apoptin expression while protecting L02 cells against apoptosis induced by TNF-α and Act D in vitro. Activation of hepatic stellate cells was suppressed and the balance between MMP13 and TIMP1 maintained in vitro by SNS. These activities may be associated with SNS-induced NF-κB suppression and PPAR-γ activation.Conclusion: SNS effectively impedes liver fibrosis progression through alleviating inflammation, ECM accumulation, aberrant angiogenesis and apoptosis of hepatic parenchymal cells along with inhibiting activation of hepatic stellate cells through effects on multiple targets and may thus serve as a novel therapeutic regimen for this condition.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yunqi Yao ◽  
Zhemin Xia ◽  
Fuyi Cheng ◽  
Qingyuan Jang ◽  
Jiao He ◽  
...  

Abstract Background Liver fibrosis (LF) is a common pathological process characterized by the activation of hepatic stellate cells (HSCs) and accumulation of extracellular matrix. Severe LF causes cirrhosis and even liver failure, a major cause of morbidity and mortality worldwide. Transplantation of human placental mesenchymal stem cells (hPMSCs) has been considered as an alternative therapy. However, the underlying mechanisms and the appropriate time window for hPMSC transplantation are not well understood. Methods We established mouse models of CCl4-injured LF and administered hPMSCs at different stages of LF once a week for 2 weeks. The therapeutic effect of hPMSCs on LF was investigated, according to histopathological and blood biochemical analyses. In vitro, the effect of hPMSCs and the secretomes of hPMSCs on the inhibition of activated HSCs was assessed. RNA sequencing (RNA-seq) analysis, real-time PCR array, and western blot were performed to explore possible signaling pathways involved in treatment of LF with hPMSCs. Results hPMSC treatment notably alleviates experimental hepatic fibrosis, restores liver function, and inhibits inflammation. Furthermore, the therapeutic effect of hPMSCs against mild-to-moderate LF was significantly greater than against severe LF. In vitro, we observed that the hPMSCs as well as the secretomes of hPMSCs were able to decrease the activation of HSCs. Mechanistic dissection studies showed that hPMSC treatment downregulated the expression of fibrosis-related genes, and this was accompanied by the upregulation of Caveolin-1 (Cav1) (p < 0.001). This suggested that the amelioration of LF occurred partly due to the restoration of Cav1 expression in activated HSCs. Upregulation of Cav1 can inhibit the TGF-β/Smad signaling pathway, mainly by reducing Smad2 phosphorylation, resulting in the inhibition of activated HSCs, whereas this effect could be abated if Cav1 was silenced in advance by siRNAs. Conclusions Our findings suggest that hPMSCs could provide multifaceted therapeutic benefits for the treatment of LF, and the TGF-β/Cav1 pathway might act as a therapeutic target for hPMSCs in the treatment of LF.


2013 ◽  
Vol 56 (2) ◽  
pp. 73-79
Author(s):  
Lenka Bittnerová ◽  
Alena Jiroutová ◽  
Emil Rudolf ◽  
Martina Řezáčová ◽  
Jiří Kanta

Activated hepatic stellate cells (HSC) are a major source of fibrous proteins in cirrhotic liver. Inducing or accelerating their apoptosis is a potential way of liver fibrosis treatment. Extracellular matrix (ECM) surrounding cells in tissue affects their differentiation, migration, proliferation and function. Type I collagen is the main ECM component in fibrotic liver. We have examined how this protein modifies apoptosis of normal rat HSC induced by gliotoxin, cycloheximide and cytochalasin D in vitro and spontaneous apoptosis of HSC isolated from CCl4-damaged liver. We have found that type I collagen gel enhances HSC apoptosis regardless of the agent triggering this process.


2009 ◽  
Vol 45 (5-6) ◽  
pp. 205-212 ◽  
Author(s):  
Petra Krause ◽  
Farahnaz Saghatolislam ◽  
Sarah Koenig ◽  
Kirsten Unthan-Fechner ◽  
Irmelin Probst

2018 ◽  
Vol 96 (8) ◽  
pp. 728-741 ◽  
Author(s):  
Sowmya Mekala ◽  
SubbaRao V. Tulimilli ◽  
Ramasatyaveni Geesala ◽  
Kanakaraju Manupati ◽  
Neha R. Dhoke ◽  
...  

Apoptotic hepatocytes release factors that activate hepatic stellate cells (HSCs), thereby inducing hepatic fibrosis. In the present study, in vivo and in vitro injury models were established using acetaminophen, ethanol, carbon tetrachloride, or thioacetamide. Histology of hepatotoxicant-induced diseased hepatic tissue correlated with differential expression of fibrosis-related genes. A marked increase in co-staining of transforming growth factor β receptor type II (TGFRIIβ) – desmin or α-smooth muscle actin – platelet-derived growth factor receptor β (PDGFRβ), markers of activated HSCs, in liver sections of these hepatotoxicant-treated mice also depicted an increase in Annexin V – cytokeratin expressing hepatocytes. To understand the molecular mechanisms of disease pathology, in vitro experiments were designed using the conditioned medium (CM) of hepatotoxicant-treated HepG2 cells supplemented to HSCs. A significant increase in HSC proliferation, migration, and expression of fibrosis-related genes and protein was observed, thereby suggesting the characteristics of an activated phenotype. Treating HepG2 cells with hepatotoxicants resulted in a significant increase in mRNA expression of platelet-derived growth factor BB (PDGF-BB) and transforming growth factor β (TGFβ). CM supplemented to HSCs resulted in increased phosphorylation of PDGFRβ and TGFRIIβ along with its downstream effectors, extracellular signal-related kinase 1/2 and focal adhesion kinase. Neutralizing antibodies against PDGF-BB and TGFβ effectively perturbed the hepatotoxicant-treated HepG2 cell CM-induced activation of HSCs. This study suggests PDGF-BB and TGFβ as potential molecular targets for developing anti-fibrotic therapeutics.


Sign in / Sign up

Export Citation Format

Share Document