P1676 A new three-dimensional echocardiographic system using digital radio frequency data ? visualization and quantitative analysis of aortic valve dynamics with high resolution

2003 ◽  
Vol 24 (5) ◽  
pp. 315
Author(s):  
M HANDKE
Circulation ◽  
2003 ◽  
Vol 107 (23) ◽  
pp. 2876-2879 ◽  
Author(s):  
Michael Handke ◽  
Cosima Jahnke ◽  
Gudrun Heinrichs ◽  
Jörg Schlegel ◽  
Clemens Vos ◽  
...  

2021 ◽  
Vol 2 ◽  
Author(s):  
Caitlin L. Stockwell ◽  
Ramón Filgueira ◽  
Jon Grant

The health and welfare of farmed fish are highly dependent on environmental conditions. Under suboptimal conditions, the negative impact on welfare can cause changes in fish behaviour. Acoustic tags can provide high resolution and high frequency data to monitor fish positioning within the cage, which can be used to infer swimming behaviour. In this study, implanted acoustic tags were used to monitor the three-dimensional positioning of Atlantic salmon (Salmo salar) at a commercial farm in Nova Scotia, Canada. The one-month study period allowed the characterisation of background behaviour and changes in behaviour in relation to different environmental conditions, namely, water characteristics in terms of dissolved oxygen and temperature caused by the fall overturn, storm conditions, and feeding activity. The three-dimensional position of 15 fish was recorded using high temporal resolution (3 s). Fish movement was characterised by calculating four fish variables: distance from the centre of the cage [m], depth [m], velocity [ms−1], and turning angle [°]. The population swam in a counterclockwise swimming direction around 4 ± 2 m depth at an average speed of 0.61 ± 0.38 ms−1. After the fall overturn, the population moved significantly towards cage centre while decreasing velocity, and non-significant differences in depth and turning angle were observed. During feeding periods, a significant increase in depth and velocity, as well as a reduction in turning angle were observed. The storm event did not cause any significant change in the four fish variables. While some of the behavioural changes were difficult to assess with respect to causation, the high resolution, high frequency data provide unique detailed positioning information to further our understanding of the swimming behaviour of farmed fish.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
C Quast ◽  
S Zimmer ◽  
F Boenner ◽  
C Jacoby ◽  
I Gyamfi-Poku ◽  
...  

Abstract Background Recently, we established an experimental model of moderate aortic valve stenosis (AS) aiming to mimic human disease progression closely. Functional and structural MRI of a mouse model in experimental aortic valve stenosis has not been accomplished so far. Purpose Here, we aimed at developing comprehensive MRI approach for simultaneous assessment of changes in valvular, left ventricular and aortic morphology and function. Methods Male 12-week-old wildtype mice (C57Bl/6) were subjected to wire injury of the aortic valve to induce aortic valve stenosis. High resolution MRI at 9.4T was used to monitor subsequent functional and structural changes in the aortic valve, the ascending aorta, the left ventricle and aortic flow patterns. Results MRI permits accurate planimetry of the orifice and the thickness of the aortic valve, allows a reliable three-dimensional mapping of transvalvular aortic flow, simultaneously depicts aortic regurgitation in 3D fashion and permits assessment of left ventricular changes due to AS. In our model we observed a reduced valve orifice and an increase in valve thickness. Homogenous flow pattern under control converted to heterogenous and turbulent flow with progression of AS associated with increased aortic strain, aortic wall and left ventricular wall thickness. Conclusions In a murine model of aortic valve stenosis MRI is capable to reliably display a three-dimensional transvalvular aortic flow profile with concomitant quantification of structural and functional changes in aortic valve, left ventricle, and ascending aorta. This comprehensive functional imaging at high resolution and distinct reproducibility offers for the first time serial assessment of disease progression in an experimental model of aortic valve stenosis.


2005 ◽  
Vol 4 (5) ◽  
pp. 618-625 ◽  
Author(s):  
Hong Wang ◽  
Shawn G. Clouthier ◽  
Vladimir Galchev ◽  
David E. Misek ◽  
Ulrich Duffner ◽  
...  

Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
Hirano T. ◽  
M. Yamaguchi ◽  
M. Hayashi ◽  
Y. Sekiguchi ◽  
A. Tanaka

A plasma polymerization film replica method is a new high resolution replica technique devised by Tanaka et al. in 1978. It has been developed for investigation of the three dimensional ultrastructure in biological or nonbiological specimens with the transmission electron microscope. This method is based on direct observation of the single-stage replica film, which was obtained by directly coating on the specimen surface. A plasma polymerization film was deposited by gaseous hydrocarbon monomer in a glow discharge.The present study further developed the freeze fracture method by means of a plasma polymerization film produces a three dimensional replica of chemically untreated cells and provides a clear evidence of fine structure of the yeast plasma membrane, especially the dynamic aspect of the structure of invagination (Figure 1).


Sign in / Sign up

Export Citation Format

Share Document